The specification relates generally to antennas, and specifically to a wideband antenna for metal back mobile system applications.
The presence of metal parts on the exterior of mobile devices is becoming increasingly prevalent for reasons of aesthetics and mechanical sturdiness. 4G mobile devices are required to operate over the GSM850/900/1800/1900 UMTS bands (824-896/880-960/1710-1880/1850-1990/1920-2170 MHz) as well as the LTE700/2300/2500 bands (698-787/2305-2400/2500-2690 MHz), which can be grouped as follows: low band (698-960 MHz), middle band (1710-2170 MHz), and high band (2300-2690 MHz). Further, the LTE Advanced standard requires carrier aggregation, i.e., two carriers that may be non-contiguous being aggregated to increase the data rate. The requirements for tri-band operation and accommodating carrier aggregation give rise to challenges in fitting antennas into a compact phone design with multi-operating frequencies, and good diversity and capacity performance.
For a better understanding of the various implementations described herein and to show more clearly how they may be carried into effect, reference will now be made, by way of example only, to the accompanying drawings in which:
The present disclosure describes examples of devices with a predominantly metal and/or predominantly conducting back cover in the form of a conducting portion of the back cover. In such devices, a tri-band antenna is located in the interior of the device, for example on an internal chassis, behind the back cover, though connections to an antenna feed and/or a ground plane can run at least partially behind a conducting portion of the back cover. For example, the conducting portion can comprise a portion of the back cover that is separated from the remainder of the back cover by a gap that separates the conducting portions. Each tri-band antenna can operate in three different frequency ranges including, but not limited to, 698-960 MHz, 1710-2170 MHz and 2300-2690 MHz.
In this specification, elements may be described as “configured to” perform one or more functions or “configured for” such functions. In general, an element that is configured to perform or configured for performing a function is enabled to perform the function, or is suitable for performing the function, or is adapted to perform the function, or is operable to perform the function, or is otherwise capable of performing the function.
Furthermore, as will become apparent, in this specification certain elements may be described as connected physically, electronically, or any combination thereof, according to context. In general, components that are electrically connected are configured to communicate (that is, they are capable of communicating) by way of electric signals. According to context, two components that are physically coupled and/or physically connected may behave as a single element. In some cases, physically connected elements may be integrally formed, e.g., part of a single-piece article that may share structures and materials. In other cases, physically connected elements may comprise discrete components that may be fastened together in any fashion. Physical connections may also include a combination of discrete components fastened together, and components fashioned as a single piece.
Furthermore, as will become apparent in this specification, certain antenna components may be described as being configured for generating a resonance at a given frequency and/or resonating at a given frequency and/or having a resonance at a given frequency. In general, an antenna component that is configured to resonate at a given frequency, and the like, can also be described as having a resonant length, a radiation length, a radiating length, an electrical length, and the like, corresponding to the given frequency. The electrical length can be similar to, or different from, a physical length of the antenna component. The electrical length of the antenna component can be different from the physical length, for example by using electronic components to effectively lengthen the electrical length as compared to the physical length. The term electrical length is most often used with respect to simple monopole and/or dipole antennas. The resonant length can be similar to, or different from, the electrical length and the physical length of the antenna component. In general, the resonant length corresponds to an effective length of an antenna component used to generate a resonance at the given frequency; for example, for irregularly shaped and/or complex antenna components that resonate at a given frequency, the resonant length can be described as a length of a simple antenna component, including but not limited to a monopole antenna and a dipole antenna, that resonates at the same given frequency.
According to a first non-limiting aspect, a device is provided comprising:
a back cover having a conducting central portion and a further conducting portion on an exterior thereof, the further conducting portion being separated from the central portion by a gap;
a conducting ground plane interior to said back cover;
an interior chassis adjacent the conducting ground plane;
a metal edge ring surrounding the interior chassis and having a portion separated by said gap, wherein the portion separated by said gap and the further conducting portion on the exterior of the back cover comprise an antenna conducting plane;
an antenna feed connected to the antenna conducting plane; and
a shorting pin connecting the ground plane to the antenna conducting plane.
According to a further non-limiting aspect, a device is provided comprising:
a metallic back cover having interior and exterior portions;
a chassis disposed on the interior portion of said metallic back cover for mounting components;
a metallic edge ring surrounding said metallic back cover and said chassis;
a gap extending through the exterior portion of the back cover and through the edge, for defining one dimension of an antenna conducting plane;
a ground plane covering the chassis such that said antenna conducting plane and ground plane wrap around the chassis and components mounted thereon;
an antenna feed extending through the ground plane to the antenna conducting plane; and
a shorting pin connecting the ground plane to the antenna conducting plane.
Device 101 can be any type of electronic device that can be used in a self-contained manner to communicate with one or more communication networks using antenna 111. Device 101 can include, but is not limited to, any suitable combination of electronic devices, communications devices, computing devices, personal computers, laptop computers, portable electronic devices, mobile computing devices, portable computing devices, tablet computing devices, laptop computing devices, desktop phones, telephones, PDAs (personal digital assistants), cellphones, smartphones, e-readers, internet-enabled appliances and the like. Other suitable devices are within the scope of present implementations. Device 101 further comprises a processor 120, a memory 122, a display 126, a communication interface 124 that can optionally comprise antenna feed 110 and/or switch 115, at least one input device 128, a speaker 132 and a microphone 134.
It should be emphasized that the shape and structure of device 101 in
With reference to
With reference to
Input from input device 128 is received at processor 120 (which can be implemented as a plurality of processors, including but not limited to one or more central processors (CPUs)). Processor 120 is configured to communicate with a memory 122 comprising a non-volatile storage unit (e.g. Erasable Electronic Programmable Read Only Memory (“EEPROM”), Flash Memory) and a volatile storage unit (e.g. random access memory (“RAM”)). Programming instructions that implement the functional teachings of device 101 as described herein are typically maintained, persistently, in memory 122 and used by processor 120 which makes appropriate utilization of volatile storage during the execution of such programming instructions. Those skilled in the art will now recognize that memory 122 is an example of computer readable media that can store programming instructions executable on processor 120. Furthermore, memory 122 is also an example of a memory unit and/or memory module.
Memory 122 is an example of a computer program product, comprising a non-transitory computer usable medium having a computer readable program code adapted to be executed to implement a method.
Processor 120 can be further configured to communicate with display 126, and microphone 134 and speaker 132. Display 126 comprises any suitable one of, or combination of, flat panel displays (e.g. LCD (liquid crystal display), plasma displays, OLED (organic light emitting diode) displays, capacitive or resistive touchscreens, CRTs (cathode ray tubes)) and the like. Microphone 134 comprises any suitable microphone for receiving sound and converting to audio data. Speaker 132 comprises any suitable speaker for converting audio data to sound to provide one or more of audible alerts, audible communications from remote communication devices, and the like. In some implementations, input device 128 and display 126 are external to device 101, with processor 120 in communication with each of input device 128 and display 126 via a suitable connection and/or link.
Processor 120 also connects to communication interface 124 (interchangeably referred to as interface 124), which can be implemented as one or more radios and/or connectors and/or network adaptors, configured to wirelessly communicate with one or more communication networks (not depicted) via antenna 111. It will be appreciated that interface 124 is configured to correspond with network architecture that is used to implement one or more communication links to the one or more communication networks, including but not limited to any suitable combination of USB (universal serial bus) cables, serial cables, wireless links, cell-phone links, cellular network links (including but not limited to 2G, 2.5G, 3G, 4G+ such as UMTS (Universal Mobile Telecommunications System), GSM (Global System for Mobile Communications), CDMA (Code division multiple access), FDD (frequency division duplexing), LTE (Long Term Evolution), TDD (time division duplexing), TDD-LTE (TDD-Long Term Evolution), TD-SCDMA (Time Division Synchronous Code Division Multiple Access)) and the like), wireless data, Bluetooth™ links, NFC (near field communication) links, WLAN (wireless local area network) links, WiFi links, WiMax links, packet based links, the Internet, analog networks, the PSTN (public switched telephone network), access points, and the like, and/or a combination.
Specifically, interface 124 comprises radio equipment (i.e. a radio transmitter and/or radio receiver) for receiving and transmitting signals using antenna 111. It is further appreciated that, as depicted, interface 124 includes antenna feed 110.
As depicted, device 101 further comprises a port 136 which can include, but is not limited to a USB (Universal Serial Bus) port.
As discussed below with reference to
While not depicted, device 101 further comprises a power source, for example a battery or the like. In some implementations the power source can comprise a connection to a mains power supply and a power adaptor (e.g. an AC-to-DC (alternating current to direct current) adaptor).
In any event, it should be understood that a wide variety of configurations for device 101 are contemplated.
Furthermore, antenna 111 can be configured to operate in at least three frequency bands. A first one of the at least three frequency ranges can comprise one or more of: a frequency range of about 698 MHz to about 960 MHz; an LTE (Long-Term Evolution) frequency range; and LTE700 frequency range. A second one of the at least three frequency ranges can comprise one or more of: about 1710 to about 2170 MHz, a GSM (Global System for Mobile Communications) frequency range; a CDMA (Code Division Multiple Access) frequency range; a PCS (Personal Communications Service) frequency range; and a UMTS (Universal Mobile Telecommunications System) frequency range. A third one of the at least three frequency ranges comprises one or more of: about 2300 to about 2690 MHz, another GSM (Global System for Mobile Communications) frequency range; another CDMA (Code Division Multiple Access) frequency range; another PCS (Personal Communications Service) frequency range; and another UMTS (Universal Mobile Telecommunications System) frequency range.
In other words, antenna 111 can comprise a MIMO (multiple-in-multiple-out) tri-band antenna.
In one embodiment, antenna 111 is a planar inverted F-antenna (PIFA), as depicted in
Attention is next directed to
In any event, back cover 201 comprises a conducting central portion 203; a further conducting portion 211 separated from portion 203 by a thin gap 202 which, in one non-limiting embodiment, is 10 mm, wherein further conducting portion 211 comprises the conducting plane of antenna 111, and is of a first dimension L1 from first end edge 221 of back cover 201 to the gap 202 and a second dimension L2 between opposite sides of the metal edge ring 108; and an optional non-conducting portion 212. Conducting portions 203 and 211 can comprise one or more conducting materials, including, but not limited to, one or more metals. However, conducting plastics, conducting polymers, and the like are within the scope of present implementations. Non-conducting portion 212 can comprise one or more of plastic, polymer and/or any other suitable non-conducting material.
In some implementations back cover 201 can be flexible so that one or more latches, hooks, and the like of back cover 201 can be undone to remove back cover 201 from device 101.
In some implementations, back cover 201 can further comprise a non-conducting chassis, wherein non-conducting portion 212 comprises an end of the non-conducting chassis. However, other structures of back cover 201 are within the scope of present implementations; for example, non-conducting portion 212 can comprise a non-conducting cap connected to conducting central portion 203 using any combination of attachment devices, glues, and the like.
In some implementations, as depicted, conducting portion 203 covers about 80% of back cover 201. However, in other implementations, conducting portion 203 can cover more or less than 80% of back cover 201. However, conducting portion 211 is of a size that enables antenna 111 to operate within a specification in the operating frequency ranges.
Attention is next directed to
The interior chassis 401 is adjacent a conducting ground plane 403 that can, in some implementations, be of similar dimensions to the conducting central portion 203. In the illustrated embodiment, the interior chassis 401 is covered on one side by the back cover 201 and on an opposite side by the conducting ground plane 403 such that the antenna conducting plane and ground plane wrap around the chassis and components mounted thereon. In another non-limiting embodiment (not shown), the conducting ground plane 403 is on an inside surface of the back cover 201 and adjacent the interior chassis 401. The ground plane 403 provides a common ground voltage for the various internal components of device 101, and also acts as the PIFA ground plane.
Antenna feed 110 is of co-ax design, with an outer sheet thereof in contact with and therefore grounded by the conducting ground plane 403, and an inner line carrying RF signals from interface 124 (typically disposed on the interior chassis 401), through a via hole 405 to the conducting portion 211. The location where the feed point connects to the conducting portion 211 determines the impedance of the antenna 111.
The PIFA shorting pin 407 of antenna 111 extends from the ground plane 403 to the edge of the conducting portion 211.
In general, the resonant length of antenna 111 can be characterized by: L1+L2=λ/4 (assuming negligible width of the shorting pin 407). For example, if L1=10 mm, L2=10 cm, and the dielectric permittivity (∈) of the chassis 401 separating ground plane 403 from conducting portion 211 is 4, then the resonant frequency of antenna 111 is calculated as follows:
L1+L2=λ/4
0.01+0.1=c/4f√{square root over (∈)}
0.11=3×108/4f√{square root over (4)}
f=3×108/(4*0.11f√{square root over (4)})=340.7 MHz
However, it will be appreciated that specific implementations may incorporate portions of the mobile device environment into the antenna, such that the dimensions and therefore the classical derivation of resonant frequency may vary from the mathematical expressions above, which are provided for illustration purposes only. For example, the placement of the shorting pin 407 also contributes to tuning of the antenna and its location can affect the length of L1 and L2, as well as the size and location of the gap 202.
Interior chassis 401 can comprise apertures, cut-outs and the like to accommodate other components of device 101, and the ground plane 403 includes cut-outs, as shown in
In the embodiment of
A prototype of the antenna according to the non-limiting embodiment of
From
Turning to
In the embodiment of
A prototype of the antenna according to the non-limiting embodiment of
As shown in
Matching and tuning can be further performed to achieve designated radiation performance at certain frequency bands that are required by carrier aggregation. For example, a matching network of passive components can be added between the antenna feed 110 and antenna 111 which, in conjunction with tuning of the antenna components, provides the S11 results depicted in
A portion of the disclosure of this patent document contains material which is subject to copyright protection. The copyright owner has no objection to the facsimile reproduction by any one of the patent document or patent disclosure, as it appears in the Patent and Trademark Office patent file or records, but otherwise reserves all copyrights whatsoever.
Persons skilled in the art will appreciate that there are yet more alternative implementations and modifications possible, and that the above examples are only illustrations of one or more implementations. The scope, therefore, is to be limited by the claims appended here.
Number | Name | Date | Kind |
---|---|---|---|
6924770 | Carpenter | Aug 2005 | B2 |
8890766 | Huynh | Nov 2014 | B2 |
20070063901 | Tang | Mar 2007 | A1 |
20090153407 | Zhang | Jun 2009 | A1 |
20110193752 | Wang | Aug 2011 | A1 |
20130069836 | Bungo | Mar 2013 | A1 |
20130257659 | Darnell | Oct 2013 | A1 |
20130300626 | Lee | Nov 2013 | A1 |
20140009355 | Samardzija | Jan 2014 | A1 |
20140125528 | Tsai | May 2014 | A1 |
20150057054 | Su | Feb 2015 | A1 |
Number | Date | Country |
---|---|---|
203466294 | Mar 2014 | CN |
Entry |
---|
Extended European Search Report dated Feb. 1, 2016 for European Patent Application No. 15184722.5. |
Number | Date | Country | |
---|---|---|---|
20160079655 A1 | Mar 2016 | US |