The present invention relates to an improvement of wideband antennas with omni-directional radiation, more particularly of antennas of the type described in the patent application WO2005/122332 in the name of the applicant. Antennas of this type are used to receive and/or transmit electromagnetic signals that can be used in the wireless high bit rate communications field, more particularly in the case of wideband pulse regime transmissions of UWB (Ultra Wide Band) type. Such communications are, for example, of types WLAN, WPAN, WBAN (Wireless Local/Personal/Body Area Network).
In pulse regime, the information is sent in a pulse train, for example very short pulses in the order of a nanosecond. This results in a very wide band of frequencies.
Ultra Wideband transmissions, originally reserved for military radar applications, are gradually being introduced into the domain of civil telecommunications. Hence, the frequency band [3.1; 10.6] GHz was recently adopted by the American FCC body to enable the development of UWB communication applications for which the standard is currently being constructed.
Many applications require isotropic antennas, that is with a symmetry of revolution in the radiation pattern. This is particularly the case for applications in which portable products are used, which theoretically have no special fixed position and which must communicate via a UWB wireless link with a point of access. Here, for example products of the type Video Lyra, mobile PCs, etc. are involved. This is also the case for fixed point-to-point applications for which a permanent link is required to be provided in order to obtain a certain quality of (QoS). Indeed, person(s) moving can break the beam between two highly directive antennas and it is preferable to use omni-directional antennas for transmission and/or reception. Here, for example, a video server communicating with a high definition television receiver is involved.
One of the most well known omni-directional antennas is the dipole. As shown on
The problem related to this type of radiating element is on the one hand its small bandwidth and on the other its supply, which generally disturbs the symmetry of the structure. This leads to a disymmetrization of the near fields and results in a degradation of the far field pattern. Consequently, this is no longer as omni-directional. On the other hand, this type of antenna presents a small bandwidth.
To overcome these disadvantages, the patent application WO 2005/122332 proposes an antenna topology enabling an ultra wide band operation with an omni-directional radiation pattern. This antenna which will be described in more detail hereafter is comprised of two conductive arms placed on a substrate, one of the arms being supplied by a line passing under the other arm and forming a stripline structure.
However, the regulation bodies having imposed extremely low levels for the UWB terminals in the WiFi frequency bands between 4.92 and 5.86 GHz, it is necessary to integrate a filtering structure to this type of antenna. The filtering structures generally proposed are constituted of line-slots realized in the conductor arm(s), as described for example in the patent U.S. Pat. No. 7,061,442. However, the rejection rate as well as the bandwidth are insufficient.
This invention therefore proposes to integrate another type of filtering structure into an ultra wideband antenna of the type described in the patent application WO 2005/122332 that does not modify the shape factor or the chosen technology and retains the main radio-electric advantages of the reference antenna.
Hence, the present invention relates to a wideband dipole type antenna comprising a substrate presenting two faces, a first conductor arm, a second conductor arm placed on the substrate, a feeder line supplying the second arm passing under the first arm, characterized in that the feeder line extends by a line element placed under the second arm, this element being dimensioned to filter a given frequency.
The length of the line element is generally of the order of λg/2 where λg is the guided wavelength in the line for the frequency band to reject.
In this case as explained in more detail hereafter, the feeder line is not connected either to the first or the second arm, the supply being realized by an electromagnetic type coupling.
In one embodiment, the first arm is formed by two conductive elements of identical geometry placed opposite each other on the two faces of the substrate. In this case, the feeder line is placed between the two conductive elements forming a stripline structure.
Within the context of the invention, the feeder line can also be realized by a microstrip line passing below the first conductor arm comprised of a sole conductor element realized on a substrate face, the microstrip line being realized on the other face of the substrate. The second conductor arm can be formed either from a single conductive element realized on the same substrate face as the first arm or formed from two conductive elements of identical geometry placed opposite each other on the two faces of the substrate.
According to an embodiment of the invention, when the conductive arms are constituted by two conductive elements on opposite sides, the two conductive elements are connected by holes made to pass through the substrate and filled with conductive material. This characteristic enables the avoidance of the leaks generated by the feeder line in the form of a surface wave in the substrate.
Preferably, the holes are made on the periphery of the conductive elements. This characteristic enables both parts of the conductive elements, which are opposite each other, to have the same potential.
Other characteristics and advantages of the present invention will emerge on reading the description of different embodiments, the description being made with reference to the annexed drawings wherein:
With reference to
As shown in
The substrate 201 can be realized in various flexible or rigid materials. It can be constituted by a flexible or rigid printed circuit plate or by any other dielectric material: a glass plate, a plastic plate, etc. According to the embodiment of
The supply of the dipole is realized by a first contact 211 at the level of the first arm 202 and by a second contact 212 at the level of the second arm 203. The second contact 212 is connected to a generator using a buried line 206 passing under the first arm 202 between the two conductive elements 204 and 205. In fact the substrate consists of two plates linked together in such a way to obtain a stripline structure. The generator normally belongs to an RF circuit from which the energy is brought to the antenna. The line 206 is therefore a strip line.
The present invention relates to the integration of a filtering element with an antenna of the type described above. As shown diagrammatically in
As shown diagrammatically in
To simulate the results obtained, an antenna as shown in
The phenomenon can be explained in the following manner, the dipole is deemed to be excited by the magnetic coupling via a stripline-slot line transition. The slot line flares out gradually according to a more or less circular profile from the crossing point with the stripline. Those skilled in the art know (by analogy with the Knorr microstripline-slotline transition) that for this transition, the coupling is proportional to the vector product Hm̂Es where Hm is the magnetic field of the microstrip line and Es is the electric field in the slot. These field values are taken in the coupling zone (at the crossing point). Hence, the open circuit terminating the stripline brings about at the intersection point, an open circuit and so a null Hm (non-coupling condition) field at a frequency for which the extension of the stripline beyond the crossing point is equal to a guided half-wavelength. Apart from this condition, the coupling conditions are possible and the dipole is excited over a wide frequency band.
The invention is not limited to the embodiments described and those skilled in the art will recognize the existence of diverse embodiment variants. Hence, the conductive elements can be not only circular but also of elliptical shape with a vertical or horizontal main axis. The technology that can be used, is not only stripline technology as described in the examples above but also microstrip technology.
Number | Date | Country | Kind |
---|---|---|---|
07/55502 | Jun 2007 | FR | national |