The present embodiments relate generally to laser systems and more particularly to widely tunable infrared source (WTIRS) laser systems and methods.
Widely tunable infrared source lasers are a special class of Wavelength beam combining (WBC) lasers. WBC methods have been developed to combine beams along a combining dimension and produce a high power multi-wavelength output.
There are various known methods for making tunable diode or semiconductor lasers. These methods are: Littrow, Littman-Metcalf, and sampled grating. In both Littrow and Littman-Metcalf configurations wavelength tuning is accomplished by mechanically rotating the diffraction grating or mirror. However, there are disadvantages with these methods. For example, the tuning range for such a tunable laser is limited to the gain bandwidth of each diode emitter. Additionally, the wavelength tuning speed is very slow and is limited by the mechanical nature of the tuning mechanism. In a sampled grating approach, the tuning speed can be very fast. However, the tuning range is limited to the gain of the diode element.
The following application seeks to solve the problems stated.
Disclosed herein is a system and method for tuning an infrared source laser in the Mid-IR wavelength range. The system and method comprising, at least, a plurality of individually tunable emitters, each emitter emitting a beam having a unique wavelength, a grating, a mirror positioned after the grating to receive at least one refracted order of light of at least one beam and to redirect the beam back towards the grating, and a micro-electro-mechanical system (MEMS) device containing a plurality of adjustable micro-mirrors.
In at least one embodiment, a cavity consists of an individually addressable diode or QCL laser array, a transform lens, a diffraction grating, a second transform lens, and a digital micromirror device (DMD). In some embodiments, the cavity may be a conventional WBC.
In one exemplary embodiment, the QCL or diode array may consist of 20 emitters, each emitter having a previously specified gain peak. In such an embodiment the first emitter may have a gain peak at 6 μm and the adjacent emitter has a gain peak at 6.2 μm, wherein the gain peak of each element thereafter increments by 0.2 μm. Thus, enabling discrete wavelength tuning by switching on/off specified DMD mirrors. A DMD chip may have on its surface several hundred thousand microscopic mirrors arranged in an array which correspond to the pixels in an image to be displayed. The mirrors may be individually rotated ±10-12°, to an on or off state with the light being reflected to a beam dump. In the on state the light is stabilized and exits the system as a stabilized wavelength.
For purposes of this application optical elements may refer to any of lenses, mirrors, prisms and the like which redirect, reflect, bend, or in any other manner optically manipulate electromagnetic radiation. Additionally, the term beam includes visible light, infrared radiation, ultra-violet radiation, and electromagnetic radiation. Emitters include any beam-generating device such as semiconductor elements, which generate a beam, but may or may not be self-resonating. These also include fiber lasers, disk lasers, non-solid state lasers and so forth. Generally each emitter is comprised of at least one gain element. For example, a diode element is configured to produce a beam and has a gain element, which may be incorporated into a resonating system.
It should also be understand that certain emitters mentioned in embodiments below, such as a diode element, may be interchanged with other types of beam emitters.
DLP in industry is sometimes used to mean an array of individually controllable micromirrors, because these chips are sometimes called DLP chips and used in DLP projector systems. For this application, we prefer to use the term DMD digital micromirror device, which may be interpreted broadly to include any individually controllable array of reflectors, wherein the reflectors are small in size.
Wavelength beam combining (WBC) is an incoherent process and, thus, does not require phasing of laser elements. In some embodiments, the brightness of the output beam 112 scales proportionally to the total number of laser elements. The output beam 112 of a WBC system is that of a single beam. In both coherent and WBC systems, the output beam quality is the same as that of a single emitter but the output power scales the power from all the laser elements. If both very high spectral brightness (single frequency operation) and very high spatial brightness (single spatial mode) is required then coherent beam combination is the only method. However, in many cases single frequency operation is not desired and may be detrimental to the functionality of the system, thus making WBC the preferred approach.
As shown, beams are emitted from 202 and converge onto 220. It should be understood that 210, which causes the beams to be angled individually onto grating 220 may be absent. In other embodiments, where each individual emitter is mechanically positioned to converge on to grating 220, this still allows for the angle-to-wavelength conversion property of grating 220 to provide feedback into each mechanically positioned emitter at a different wavelength.
After the beams are caused to converge onto grating 220 orders of diffracted light occur. In one instance the 0th order beam is used to re-image onto a mirror 216. The reflected beam is overlapped onto the diffraction grating. The output beam is then taken off the 1st order in combination with a chief-ray collimation lens (this would be 240 in
As mentioned the orders that are diffracted from 220 in the tunable cavity system 200 may be recycled and used as feedback mechanisms to stabilize the individual emitters of 202. Lenses 212 and 214 assist in collimating the diffracted beams and upon being reflected cause the reflected beams to converge back onto the grating. Reflective mirror 216 is such a mirror that helps overlap and recycle these orders.
In some embodiments, the cavity 200 may be a conventional WBC. In such embodiments, discrete wavelength tuning of each element may be possible. At any given time there may be only one beam exiting hitting the DMD 230, which is accomplished by switching off all but one of the DMD mirrors 235.
In some embodiments, the cavity 200, may act as a conventional WBC cavity with the exception of not extracting the output beam from DMD 235. To illustrate this point assume in one exemplary embodiment, the QCL or diode array 202 consists of 20 emitters, each emitter having a previously specified gain peak ranging from 6 μm-10.0 μm. Each subsequent element in between has a gain peak incrementing by 0.2 μm. For example, in such embodiments, the middle element has a gain peak at 7 μm and the last element has a gain peak at 10 μm. If the middle mirror of the DMD 230 is turned on and all other DMD mirrors 235 are turned off, then all 20 elements will lase at the unique wavelength at an increment of 0.2 μm. For example, in such embodiments the wavelengths are 6 μm, 6.2 μm, 6.4 μm . . . 9.6 μm, 9.8 μm, and 10.0 μm.
Consistent with the present disclosure, are systems wherein if the left most DMD mirror is turned on and all other DMD mirrors are turned off then the first emitter will lase at a wavelength of 5.9 μm, the adjacent elements will lase at wavelengths in increments of 0.2 μm, and the last element will lase at 9.9 μm. In
Contemplated herein are methods to extract higher amounts of useable output power. In at least one embodiment, extracting higher amounts of useable output power can be achieved by inserting a beam splitter inside the cavity.
In the embodiment illustrated in
Further in
Consistent with the present disclosure are systems having a grating element. In at least one embodiment, a transmission grating may be preferable, while in other embodiments, a reflection grating may be desired.
Consistent with the present disclosure are systems having individually addressable array of quantum cascade laser (QCL) elements. In such embodiments, electric tuning may be accomplished by turning on only one element of the array at a time. Each laser element may be wavelength locked to a unique wavelength that is linearly chirped in the array. Thus, in such embodiments, wavelength tuning over the entire 6-10 μm range may be accomplished and the single output beam would the same characteristics and beam quality as a single element that is turned on. Due to the nature of wavelength tuning disclosed. In such embodiments, within a given element, the wavelength shift may be about 200 nm and the total bandwidth of the system may 4000 nm. As a result, it is contemplated that a smearing of the near field may occur at about 200 nm/4000 nm=5%.
Quantum Cascade Laser (QCL) Sources
In order to meet the broad wavelength coverage requirement for 6 to 10 μm, as described for at least one embodiment above, QCLs having a tuning range of 100 to 200 nm per QCL may be desired. A spectral bandwidth of 200 nm may be supported by the tuning range or gain bandwidth of the laser element.
In at least one embodiment, as many as 40-50 QCLs may be used to cover the desired wavelength range. Redundancy of QCLs may be used in some embodiments to help ensure reliable operation. With 40 QCLs for example, the tuning step size may be 100 nm.
In some embodiments, lasing sources may be single emitter, single transverse mode semiconductor QCLs. In order to obtain a desired power and a diffraction limited output power, single emitter diodes may be used and mounted on a common heat-sink. In at least one embodiment, the diode may be mounted on a heat-sink using discrete device packaging technology; however other mounting technologies commonly known in the art are also consistent with the present disclosure. In at least one embodiment, each device is lensed with collimating optics.
As shown in
Digital Light Processing (DLP aka DMD) Chip
In some embodiments, the fine tuning within each 100 nm band may be accomplished using a tunable component in the WBC external cavity. The specification that drives this requirement is the tuning step time of 125 sec (threshold) and 31 μsec (objective). One can select a DLP chip that allows for this very fast tuning. See
In at least one embodiment, the DLP chip is a MEMS-based device and has no large mechanical moving parts.
Control Electronics and Software
In some embodiments, control electronics and software may be used to apply current to the individually addressable QCL array and operate the DMD chip as required for the electronic wavelength tuning. In such embodiments, the QCLs may operate under pulsed operation, operated by a pulsed QCL driver. In some embodiments, the control software may have wavelength sweep modes, ramp modes, and/or any other modes commonly used in the art.
In at least one embodiment, coarse wavelength tuning may be accomplished by switching the specific QCL of interest in the array. In additional embodiments, fine wavelength tuning may be accomplished by adjusting the DMD mirror corresponding to that particular device. By adjusting the DMD mirror, electrical power may be applied to all elements of the QCL array constantly, and wavelength tuning may be accomplished by adjusting the DMD mirror for feedback to a single element within the QCL array.
Although the focus of this application has been on the MID-IR range, the principles may apply to wavelengths outside of those ranges that are determined by the emitters and gratings used.
The above description is merely illustrative. Having thus described several aspects of at least one embodiment of this invention including the preferred embodiments, it is to be appreciated that various alterations, modifications, and improvements may readily occur to those skilled in the art. Such alterations, modifications, and improvements are intended to be part of this disclosure, and are intended to be within the spirit and scope of the invention. Accordingly, the foregoing description and drawings are by way of example only.
This application is a continuation of U.S. patent application Ser. No. 13/923,344, filed Jun. 20, 2013, which claims the benefit of and priority to U.S. Provisional Patent Application No. 61/661,836, filed Jun. 20, 2012, the entire disclosure of each of which is hereby incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
6044096 | Wolak et al. | Mar 2000 | A |
6192062 | Sanchez-Rubio et al. | Feb 2001 | B1 |
6356576 | Smith | Mar 2002 | B1 |
6687275 | Lin | Feb 2004 | B2 |
6810165 | Golub | Oct 2004 | B2 |
7177496 | Polynkin | Feb 2007 | B1 |
7394842 | Glebov | Jul 2008 | B2 |
7463664 | Mizuuchi | Dec 2008 | B2 |
7949030 | Volodin | May 2011 | B2 |
8049966 | Chann | Nov 2011 | B2 |
20040095983 | Whitley | May 2004 | A1 |
20040174604 | Brown | Sep 2004 | A1 |
20040252744 | Anikitchev et al. | Dec 2004 | A1 |
20060092994 | Frankel | May 2006 | A1 |
20060126690 | Kido et al. | Jun 2006 | A1 |
20070002925 | Zediker | Jan 2007 | A1 |
20100110556 | Chann | May 2010 | A1 |
20110058176 | Pflugl et al. | Mar 2011 | A1 |
20110216417 | Chann et al. | Mar 2011 | A1 |
20110216792 | Chann et al. | Mar 2011 | A1 |
20110310921 | Chann et al. | Aug 2011 | A1 |
20110305250 | Chann et al. | Dec 2011 | A1 |
20110305256 | Chann et al. | Dec 2011 | A1 |
20120105968 | Chann et al. | May 2012 | A1 |
20130208361 | Chann et al. | Aug 2013 | A1 |
Number | Date | Country |
---|---|---|
2007165624 | Jun 2007 | JP |
2006045303 | May 2006 | WO |
2006097531 | Sep 2006 | WO |
2011109760 | Nov 2011 | WO |
Number | Date | Country | |
---|---|---|---|
20180097334 A1 | Apr 2018 | US |
Number | Date | Country | |
---|---|---|---|
61661836 | Jun 2012 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13923344 | Jun 2013 | US |
Child | 15800429 | US |