WiFi management interface for microwave radio and reset to factory defaults

Information

  • Patent Grant
  • 9986565
  • Patent Number
    9,986,565
  • Date Filed
    Friday, July 17, 2015
    9 years ago
  • Date Issued
    Tuesday, May 29, 2018
    6 years ago
Abstract
WIFI management interfaces for microwave radio and reset to factory defaults are provided herein. Methods may include transmitting or receiving, on a dedicated management interface antenna of the wireless radio management signals, signals in a dedicated band for controlling operations of the wireless radio, and transmitting or receiving, on at least one additional antenna of the wireless radio management signals, signals that are not used for controlling operations of the wireless radio. The dedicated management interface antenna and the at least one additional antenna being physically separated from one another.
Description
FIELD OF THE INVENTION

The present technology may be generally described as providing a WiFi Management Interface for Microwave Radio and Reset to Factory Defaults.


BACKGROUND

Resetting of microwave radio devices often requires direct access to physical ports (e.g., Ethernet or craft) ports of a radio. Unfortunately, these devices are often installed on towers, which make physical access difficult.


SUMMARY

In some embodiments, the present technology may be directed to a wireless radio, comprising: (a) at least one antenna for transmitting or receiving signals, the at least one antenna using a first interface; and (b) a dedicated management interface antenna providing a wireless interface that is used to manage and configured the wireless radio.


In some embodiments, the present technology may be directed to a method for controlling a wireless radio. The wireless radio comprises a processor and a memory for storing executable instructions. The processor executes the instructions to perform the method, comprising: (a) transmitting or receiving, on a dedicated management interface antenna of the wireless radio management signals, signals in a dedicated band for controlling operations of the wireless radio; and (b) transmitting or receiving, on at least one additional antenna of the wireless radio management signals, signals that are not used for controlling operations of the wireless radio, wherein the dedicated management interface antenna and the at least one additional antenna are physically separated from one another.





BRIEF DESCRIPTION OF THE DRAWINGS

Certain embodiments of the present technology are illustrated by the accompanying figures. It will be understood that the figures are not necessarily to scale and that details not necessary for an understanding of the technology or that render other details difficult to perceive may be omitted. It will be understood that the technology is not necessarily limited to the particular embodiments illustrated herein.



FIG. 1A are front and rear perspective views of an exemplary enclosure;



FIG. 1B is an exploded perspective view of the exemplary enclosure of FIG. 1A;



FIG. 1C is an exploded perspective view of the exemplary enclosure of FIGS. 1A-B, shown from the rear;



FIG. 2 illustrates an exemplary computing device that may be used to implement embodiments according to the present technology;



FIGS. 3-6 are various exemplary management graphical user interfaces; and



FIG. 7 is a flowchart of an exemplary method for controlling a wireless radio.





DESCRIPTION OF EXEMPLARY EMBODIMENTS

While this technology is susceptible of embodiment in many different forms, there is shown in the drawings and will herein be described in detail several specific embodiments with the understanding that the present disclosure is to be considered as an exemplification of the principles of the technology and is not intended to limit the technology to the embodiments illustrated.


The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the invention. As used herein, the singular forms “a”, “an” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. It will be further understood that the terms “comprises” and/or “comprising,” when used in this specification, specify the presence of stated features, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, and/or groups thereof.


It will be understood that like or analogous elements and/or components, referred to herein, may be identified throughout the drawings with like reference characters. It will be further understood that several of the figures are merely schematic representations of the present technology. As such, some of the components may have been distorted from their actual scale for pictorial clarity.


Generally speaking, the present technology contemplates adding a 2.4 GHz/5 GHz WiFi radio to a microwave radio operating in a separate band, which provides a simple means for a technician to configure and manage the microwave radio when onsite. Prior approaches have involved an electrical connection to the microwave radio through either Ethernet or a “craft port” (typically RS-232). Benefits of the WiFi approach are convenience (using cell phone instead of a wired laptop connection) and the ability to reset the radio to factory defaults without requiring a local or remote reset button.


A technician can reset a microwave radio to factory defaults by using the 2.4 GHz wireless interface. The process involves disconnecting the Ethernet interface from the network and power cycling the radio. Upon powering up the device, the 2.4 GHz interface starts up in a “reset” configuration with a specific reset SSID. The interface is shut down after a set time interval unless the client associates. The present technology allows a technician to easily reset and reconfigure a wireless radio when, for example, the technician has forgotten a password for the wireless radio. Often times these radios are placed in locations where access to the radio is difficult or dangerous. The use of a dedicated antenna and band, as well as management interfaces allow for efficient resetting and reconfiguring of a wireless radio.


It will be understood that in some instances, the SSID may include an SSID that includes special characters such as letters or numbers that signify that the device is in a recovery mode, for example, “RESET” or “RECOVER”, although other characters may also be utilized. Knowing the SSID, the technician may access the device's configurations via the management interface via entering a unique device identifier, which may correspond to the serial number of the radio. Thus, with the recovery SSID and the unique device identifier (or other authentication credentials), the technician may reconfigure the settings of the radio via the management interface (see FIG. 3).


These features allow for technicians to reset the settings of the radio device, such as when the IP address for the radio is lost or if authentication credentials for the radio device are lost. Such wireless reconfiguration features allow for simplified commissioning and decommissioning of devices without need for careful device configuration maintenance.



FIGS. 1A-C collectively illustrate an exemplary device 100 that includes a WiFi management interface (FIG. 3) and utilizes a dedicated antenna 150. It will be understood that while the management interface and dedicated antenna 150 have been described as being utilized with the device 100, one of ordinary skill in the art will appreciate that any suitable radio antenna that is capable of being rest to factory default settings may also likewise utilize the present technology.


While the present technology may be utilized in conjunction with the device of FIGS. 1A-C, it will be understood that the 2.4 Ghz/5 Ghz wireless interface configuration and management methods/systems provided herein may also likewise be utilized with other suitable devices or systems, as would be apparent to one of ordinary skill in the art with the present disclosure before them. Thus, FIGS. 1A-C and their accompanying descriptions are intended to be viewed as an example of a device that can be configured using the present technology. Therefore, the description and figures of 1A-C should not be viewed as limiting the present technology in any specific manner unless specifically stated to be limiting or claimed as limiting.


The device 100 may comprise a mounting bracket that allows the device 100 to be pivotally coupled to a mounting surface, such as a tower (not shown). The ability of the device 100 to be pivotally connected to a mounting surface allows for an azimuth angle to be established, as would be known to one of ordinary skill in the art with the present disclosure before them.


The mounting bracket may couple with a back cover via a plurality of fasteners. The device 100 also comprises a dish that is formed so as to include a rear cavity and a front cavity. A PCB assembly is disposed at least partially within the rear cavity of the dish. A seal, such as a gasket, may be disposed between the outer peripheral edge of the rear cavity and the back cover to sealingly protect the PCB assembly from contamination. The PCB assembly may also include a PCB heat spreader or other means for transferring heat generated by the PCB assembly to the ambient environment such as fans and so forth.


In some instances, the dish may include a side lobe shield that extends beyond the outer peripheral edge of the dish. In some instances the side lobe shield may include a shroud having a sidewall that forms a ring around the outer peripheral edge of an upper surface of the dish.


Advantageously, the inner surface of the side lobe shield may be provided with a metalized coating. The upper surface of the dish may also include a metalized coating. In some instances at least a portion of the inner surface of the side lobe shield may be augmented with a metallic coating and/or a microwave absorbing material, such as a foam or other electrically insulating material that is coated along the inner surface of the front cavity of the dish. The microwave absorbing material is shown as being disposed within the front cavity, but may also be applied or sprayed to the inner surface of the side lobe shield. In other instances, the microwave absorbing material may be integrated into the side lobe shield itself. An exemplary metalized coating of the upper surface of the dish and the inner sidewall of the side lobe shield is illustrated in Photos A, B, and E, which are attached hereto.


Because the side lobe shield extends beyond the outer peripheral edge of the dish, the side lobe shield functions to direct the signals reflected by the dish surface in a more uniform and directed pattern. For example, the side lobe shield may reduce side lobe radiation which is transmitted from and/or received by the device. Thus, the device 100 may reduce an amount of signals which are received by the device 100 that are transmitted by adjacent transmitters. Also, the side lobe shield of the device 100 may also reduce an amount of microwave signals transmitted via side lobe projection by the device. Thus, the device 100 reduces both the transmission and reception of deleterious side lobe signals.


The device 100 may also comprise a wave guide that is communicatively coupled with the PCB assembly. A cylindrical dielectric plate may couple with the wave guide. Also, a reflector may be associated with the dielectric plate. The combination of the PCB assembly, wave guide, dielectric plate, and reflector may collectively be referred to as a “radio.” A radome cover attaches to the side lobe shield to sealingly cover the reflector, dielectric, and wave guide that are housed within the front cavity.


It will be understood that the radome, side lobe shield, dish, and back cover of the device 100 may be constructed from any suitable material such as a plastic, a polymeric material, a resin, a composite material, a natural material, or any other material that would be known to one of ordinary skill in the art.


The dedicated antenna 150 provides for directional communication with a technician, wirelessly. The dedicated antenna 150 may be pointed generally to a location of interaction, such as where a technician will be typically located. For example, if the device 100 is on a tower, the dedicated antenna 150 may point towards the base of the tower. Advantageously, the dedicated antenna 150 may be configured to minimize interference.


The dedicated antenna 150 may communicatively couple with and may be controlled by the PCB assembly. The dedicated antenna 150 may communicate on a channel that is distinct from the channel used by the radio assembly of the device 100 to prevent interference with the broadcast signals transmitted and received by the device 100. Stated otherwise, the dedicated antenna 150 may allow for wireless communications over an out-of-bandwidth channel, which reduces signal interference.



FIG. 2 illustrates an exemplary computing device 200 that may be used to implement an embodiment of the present technology. The computing device 200 of FIG. 2 includes one or more processors 210 and memory 220. The computing device 200 may be utilized to control one or more functions via the PCB assembly of device 100 of FIG. 1. In some instances, the processor 210 and memory 220 may be integrated into the PCB assembly. Exemplary functions executed by the processor 210 and stored in memory 220 may include, but are not limited to transmission and/or receipt of signals, as well as signal processing commonly utilized with 2×2 (or greater) multiple input, multiple output (MIMO) transceivers. Additional functions include providing a management interface (GUI) that allows technicians to configure settings for the radio system. Additionally, a remote reset feature may also be programmed into the radio system.


The Main memory 220 stores, in part, instructions and data for execution by processor 210. Main memory 220 can store the executable code when the computing device 200 is in operation. The computing device 200 of FIG. 2 may further include a mass storage device 230, portable storage medium drive(s) 240, output devices 250, user input devices 260, a graphics display 270, and other peripheral devices 280.


The components shown in FIG. 2 are depicted as being connected via a single bus 290. The components may be connected through one or more data transport means. Processor unit 210 and main memory 220 may be connected via a local microprocessor bus, and the mass storage device 230, peripheral device(s) 280, portable storage device 240, and graphics display 270 may be connected via one or more input/output (I/O) buses.


Mass storage device 230, which may be implemented with a magnetic disk drive, an optical disk drive, and/or a solid-state drive is a non-volatile storage device for storing data and instructions for use by processor unit 210. Mass storage device 230 can store the system software for implementing embodiments of the present technology for purposes of loading that software into main memory 220.


Portable storage device 240 operates in conjunction with a portable non-volatile storage medium, such as a floppy disk, compact disk or digital video disc, to input and output data and code to and from the computing device 200 of FIG. 2. The system software for implementing embodiments of the present technology may be stored on such a portable medium and input to the computing device 200 via the portable storage device 240.


Input devices 260 provide a portion of a user interface. Input devices 260 may include an alphanumeric keypad, such as a keyboard, for inputting alphanumeric and other information, or a pointing device, such as a mouse, a trackball, stylus, or cursor direction keys. Additionally, the computing device 200 as shown in FIG. 2 includes output devices 250. Suitable output devices include speakers, printers, network interfaces, and monitors.


Graphics display 270 may include a liquid crystal display (LCD) or other suitable display device. Graphics display 270 receives textual and graphical information, and processes the information for output to the display device.


Peripheral device(s) 280 may include any type of computer support device to add additional functionality to the computing device. Peripheral device(s) 280 may include a modem or a router.


The components contained in the computing device 200 of FIG. 2 are those typically found in computing devices that may be suitable for use with embodiments of the present technology and are intended to represent a broad category of such computer components that are well known in the art. Thus, the computing device 200 of FIG. 2 can be a personal computer, hand held computing device, telephone, mobile computing device, workstation, server, minicomputer, mainframe computer, or any other computing device. The computer can also include different bus configurations, networked platforms, multi-processor platforms, etc. Various operating systems can be used including UNIX, Linux, Windows, Macintosh OS, Palm OS, and other suitable operating systems.



FIG. 3 illustrates an exemplary graphical user interface in the form of a login page that may be displayed on a mobile device, such as a tablet-style computing device. FIG. 4 illustrates an exemplary graphical user interface in the form of a management interface that allows a technician to control and configure a radio device in accordance with the present technology. FIGS. 5 and 6 are similar to FIGS. 3 and 4, respectively with the exception that FIGS. 5 and 6 are configured for display on a mobile device, such as a cellular telephone.



FIG. 7 is a flowchart of an exemplary method for controlling a wireless radio. In some embodiments, the method may include broadcasting 705 a reset service set identifier (SSID) upon power up or reset. As mentioned above, the SSID may include a set of characters that indicate to a technician that the wireless radio has been reset.


In some embodiments the method may include closing 710 the dedicated band if no client associates with the wireless radio within a predetermined period of time after transmitting SSID.


When a client couples with the radio on the dedicated band, the method may include receiving 715 a unique device identifier from a client that is coupled to the wireless radio on the dedicated band. This unique device identifier may be received via a management UI (e.g., login page as described above.


The method may include authenticating 720 the client and receiving 725 reconfiguration instructions for the wireless radio. Finally, the method may include reconfiguring 730 the wireless radio in accordance with the reconfiguration instructions.


Some of the above-described functions may be composed of instructions that are stored on storage media (e.g., computer-readable medium). The instructions may be retrieved and executed by the processor. Some examples of storage media are memory devices, tapes, disks, and the like. The instructions are operational when executed by the processor to direct the processor to operate in accord with the technology. Those skilled in the art are familiar with instructions, processor(s), and storage media.


It is noteworthy that any hardware platform suitable for performing the processing described herein is suitable for use with the systems and methods provided herein. Computer-readable storage media refer to any medium or media that participate in providing instructions to a central processing unit (CPU), a processor, a microcontroller, or the like. Such media may take forms including, but not limited to, non-volatile and volatile media such as optical or magnetic disks and dynamic memory, respectively. Common forms of computer-readable storage media include a floppy disk, a flexible disk, a hard disk, magnetic tape, any other magnetic storage medium, a CD-ROM disk, digital video disk (DVD), any other optical storage medium, RAM, PROM, EPROM, a FLASHEPROM, any other memory chip or cartridge.


Computer program code for carrying out operations for aspects of the present invention may be written in any combination of one or more programming languages, including an object oriented programming language such as Java, Smalltalk, C++ or the like and conventional procedural programming languages, such as the “C” programming language or similar programming languages. The program code may execute entirely on the user's computer, partly on the user's computer, as a stand-alone software package, partly on the user's computer and partly on a remote computer or entirely on the remote computer or server. In the latter scenario, the remote computer may be coupled with the user's computer through any type of network, including a local area network (LAN) or a wide area network (WAN), or the connection may be made to an external computer (for example, through the Internet using an Internet Service Provider).


The corresponding structures, materials, acts, and equivalents of all means or step plus function elements in the claims below are intended to include any structure, material, or act for performing the function in combination with other claimed elements as specifically claimed. The description of the present invention has been presented for purposes of illustration and description, but is not intended to be exhaustive or limited to the invention in the form disclosed. Many modifications and variations will be apparent to those of ordinary skill in the art without departing from the scope and spirit of the invention. Exemplary embodiments were chosen and described in order to best explain the principles of the present technology and its practical application, and to enable others of ordinary skill in the art to understand the invention for various embodiments with various modifications as are suited to the particular use contemplated.


Aspects of the present invention are described above with reference to flowchart illustrations and/or block diagrams of methods, apparatus (systems) and computer program products according to embodiments of the invention. It will be understood that each block of the flowchart illustrations and/or block diagrams, and combinations of blocks in the flowchart illustrations and/or block diagrams, can be implemented by computer program instructions. These computer program instructions may be provided to a processor of a general purpose computer, special purpose computer, or other programmable data processing apparatus to produce a machine, such that the instructions, which execute via the processor of the computer or other programmable data processing apparatus, create means for implementing the functions/acts specified in the flowchart and/or block diagram block or blocks.


These computer program instructions may also be stored in a computer readable medium that can direct a computer, other programmable data processing apparatus, or other devices to function in a particular manner, such that the instructions stored in the computer readable medium produce an article of manufacture including instructions which implement the function/act specified in the flowchart and/or block diagram block or blocks.


The computer program instructions may also be loaded onto a computer, other programmable data processing apparatus, or other devices to cause a series of operational steps to be performed on the computer, other programmable apparatus or other devices to produce a computer implemented process such that the instructions which execute on the computer or other programmable apparatus provide processes for implementing the functions/acts specified in the flowchart and/or block diagram block or blocks.


The flowchart and block diagrams in the Figures illustrate the architecture, functionality, and operation of possible implementations of systems, methods and computer program products according to various embodiments of the present invention. In this regard, each block in the flowchart or block diagrams may represent a module, segment, or portion of code, which comprises one or more executable instructions for implementing the specified logical function(s). It should also be noted that, in some alternative implementations, the functions noted in the block may occur out of the order noted in the figures. For example, two blocks shown in succession may, in fact, be executed substantially concurrently, or the blocks may sometimes be executed in the reverse order, depending upon the functionality involved. It will also be noted that each block of the block diagrams and/or flowchart illustration, and combinations of blocks in the block diagrams and/or flowchart illustration, can be implemented by special purpose hardware-based systems that perform the specified functions or acts, or combinations of special purpose hardware and computer instructions.


While various embodiments have been described above, it should be understood that they have been presented by way of example only, and not limitation. The descriptions are not intended to limit the scope of the technology to the particular forms set forth herein. Thus, the breadth and scope of a preferred embodiment should not be limited by any of the above-described exemplary embodiments. It should be understood that the above description is illustrative and not restrictive. To the contrary, the present descriptions are intended to cover such alternatives, modifications, and equivalents as may be included within the spirit and scope of the technology as defined by the appended claims and otherwise appreciated by one of ordinary skill in the art. The scope of the technology should, therefore, be determined not with reference to the above description, but instead should be determined with reference to the appended claims along with their full scope of equivalents.

Claims
  • 1. A wireless radio, comprising: an antenna providing a wireless interface that is used to manage and configure the wireless radio on a dedicated band not utilized by a radio assembly of the wireless radio, a dedicated management interface antenna receiving service set identifier (SSID) reconfiguration instructions for the wireless radio, the wireless radio being reconfigured from a reset SSID established after power cycling of the wireless radio, to another SSID in accordance with the SSID reconfiguration instructions; the dedicated management interface antenna transmitting or receiving signals in a dedicated band for controlling operations of the wireless radio; at least one additional antenna of the wireless radio transmitting or receiving signals that are not used for controlling operations of the wireless radio; and the dedicated management interface antenna and the at least one additional antenna being physically separated from one another.
  • 2. The wireless radio according to claim 1, wherein the dedicated management interface antenna broadcasts management signals in 2.4 or 5 GHz frequencies.
  • 3. The wireless radio according to claim 1, wherein the dedicated management interface antenna is directed towards ground level.
  • 4. A method for controlling a wireless radio, the wireless radio comprising a processor and a memory for storing executable instructions, the processor executing the instructions to perform the method, comprising: receiving a reset signal from a technician;power cycling the wireless radio after receiving the reset signal;transmitting or receiving, on a dedicated management interface antenna of the wireless radio management signals, signals in a dedicated band for controlling operations of the wireless radio; andtransmitting or receiving, on at least one additional antenna of the wireless radio management signals, signals that are not used for controlling operations of the wireless radio, the dedicated management interface antenna and the at least one additional antenna being physically separated from one another.
  • 5. The method according to claim 4, wherein signals for controlling operations of the wireless radio comprise a service set identifier (SSID).
  • 6. The method according to claim 5, wherein the SSID includes a set of characters that indicate to a technician that the wireless radio has been reset.
  • 7. The method according to claim 5, further comprising closing the dedicated band if no client associates with the wireless radio within a predetermined period of time after transmitting the SSID.
  • 8. The method according to claim 4, further comprising receiving a unique device identifier from a client that is coupled to the wireless radio on the dedicated band.
  • 9. The method according to claim 8, wherein the unique device identifier is a serial number of the wireless radio.
  • 10. The method according to claim 8, further comprising authenticating the client.
  • 11. The method according to claim 4, further comprising reconfiguring the wireless radio in accordance with reconfiguration instructions.
  • 12. The method according to claim 11, wherein signals for controlling operations of the wireless radio comprise a management user interface (UI) that is transmitted to a client.
  • 13. The method according to claim 12, wherein the reconfiguration instructions are received via the management UI.
  • 14. The method according to claim 10, wherein signals for controlling operations of the wireless radio comprise a decommissioning signal.
  • 15. The method according to claim 4, wherein the dedicated management interface antenna transmits and receives management signals in 2.4 or 5 GHz frequencies.
CROSS REFERENCE TO RELATED APPLICATIONS

This non-provisional application is a continuation application of U.S. patent application Ser. No. 14/183,445, filed on Feb. 18, 2014, now U.S. Pat. No. 9,179,336, issued on Nov. 3, 2015, entitled “WiFi Management Interface for Microwave Radio and Reset to Factory Defaults” which is incorporated by references in its entirety including all references cited therein, which claims the priority benefit of U.S. Provisional Application Ser. No. 61/766,667, filed on Feb. 19, 2013, titled “WiFi Management Interface for Microwave Radio and Reset to Factory Defaults”, which is hereby incorporated by reference herein in its entirety including all references cited therein.

US Referenced Citations (287)
Number Name Date Kind
2735993 Humphrey Feb 1956 A
3182129 Clark et al. May 1965 A
D227476 Kennedy Jun 1973 S
3898390 Wells et al. Aug 1975 A
4188633 Frazita Feb 1980 A
4402566 Powell et al. Sep 1983 A
D273111 Hirata et al. Mar 1984 S
4543579 Teshirogi Sep 1985 A
4626863 Knop et al. Dec 1986 A
4835538 McKenna et al. May 1989 A
4866451 Chen Sep 1989 A
4893288 Maier et al. Jan 1990 A
4903033 Tsao et al. Feb 1990 A
4986764 Eaby et al. Jan 1991 A
5015195 Piriz May 1991 A
5226837 Cinibulk et al. Jul 1993 A
5231406 Sreenivas Jul 1993 A
D346598 McCay et al. May 1994 S
D355416 McCay et al. Feb 1995 S
5389941 Yu Feb 1995 A
5491833 Hamabe Feb 1996 A
5507035 Bantz et al. Apr 1996 A
5513380 Ivanov et al. Apr 1996 A
5561434 Yamazaki Oct 1996 A
D375501 Lee et al. Nov 1996 S
5580264 Aoyama et al. Dec 1996 A
5684495 Dyott et al. Nov 1997 A
D389575 Grasfield et al. Jan 1998 S
5724666 Dent Mar 1998 A
5742911 Dumbrill et al. Apr 1998 A
5746611 Brown et al. May 1998 A
5771019 Wachs et al. Jun 1998 A
6006117 Hageltorn et al. Dec 1999 A
6014372 Kent et al. Jan 2000 A
6067053 Runyon et al. May 2000 A
6137449 Kildal Oct 2000 A
6140962 Groenenboom Oct 2000 A
6176739 Denlinger et al. Jan 2001 B1
6216266 Eastman et al. Apr 2001 B1
6296565 Kenkel et al. Oct 2001 B1
6304762 Myers et al. Oct 2001 B1
D455735 Winslow Apr 2002 S
6421538 Byrne Jul 2002 B1
6658269 Golemon et al. Dec 2003 B1
6716063 Bryant et al. Apr 2004 B1
6754511 Halford et al. Jun 2004 B1
6847653 Smiroldo Jan 2005 B1
D501848 Uehara et al. Feb 2005 S
6877277 Kussel et al. Apr 2005 B2
6961545 Tehrani et al. Nov 2005 B2
6962445 Zimmel et al. Nov 2005 B2
7075492 Chen et al. Jul 2006 B1
D533899 Ohashi et al. Dec 2006 S
7173570 Wensink et al. Feb 2007 B1
7193562 Shtrom et al. Mar 2007 B2
7212163 Huang et al. May 2007 B2
7245265 Kienzle et al. Jul 2007 B2
7253783 Chiang et al. Aug 2007 B2
7257107 Swier, Jr. et al. Aug 2007 B2
7264494 Kennedy et al. Sep 2007 B2
7281856 Grzegorzewska et al. Oct 2007 B2
7292198 Shtrom et al. Nov 2007 B2
7306485 Masuzaki Dec 2007 B2
7324057 Argaman et al. Jan 2008 B2
D566698 Choi et al. Apr 2008 S
7362236 Hoiness Apr 2008 B2
7369091 Man et al. May 2008 B2
7369095 Hirtzlin et al. May 2008 B2
7380984 Wuester Jun 2008 B2
7431602 Corona Oct 2008 B2
7498996 Shtrom et al. Mar 2009 B2
7507105 Peters et al. Mar 2009 B1
7542717 Green, Sr. et al. Jun 2009 B2
7581976 Liepold et al. Sep 2009 B2
7586891 Masciulli Sep 2009 B1
7616959 Spenik et al. Nov 2009 B2
7675473 Kienzle et al. Mar 2010 B2
7676216 Stieglitz et al. Mar 2010 B2
7726997 Kennedy et al. Jun 2010 B2
7778226 Rayzman et al. Aug 2010 B2
7826408 Vleugels et al. Nov 2010 B1
7844242 Rofougaran et al. Nov 2010 B2
7857523 Masuzaki Dec 2010 B2
7929914 Tegreene Apr 2011 B2
7970367 Groe Jun 2011 B1
RE42522 Zimmel et al. Jul 2011 E
8009646 Lastinger et al. Aug 2011 B2
8069465 Bartholomay et al. Nov 2011 B1
8111678 Lastinger et al. Feb 2012 B2
8165534 Meier et al. Apr 2012 B2
8270383 Lastinger et al. Sep 2012 B2
8325695 Lastinger et al. Dec 2012 B2
D674787 Tsuda et al. Jan 2013 S
8345651 Lastinger et al. Jan 2013 B2
8482478 Hartenstein Jul 2013 B2
8515434 Narendran et al. Aug 2013 B1
8515495 Shang et al. Aug 2013 B2
D694740 Apostolakis Dec 2013 S
8666445 Chang et al. Mar 2014 B2
8675762 Cheng et al. Mar 2014 B2
8777660 Chiarelli et al. Jul 2014 B2
8792759 Benton et al. Jul 2014 B2
8827729 Gunreben et al. Sep 2014 B2
8836601 Sanford et al. Sep 2014 B2
8870069 Bellows Oct 2014 B2
8935122 Stisser Jan 2015 B2
9001689 Hinman et al. Apr 2015 B1
9019874 Choudhury et al. Apr 2015 B2
9042361 Makhlouf et al. May 2015 B2
9077071 Shtrom et al. Jul 2015 B2
9130305 Ramos et al. Sep 2015 B2
9161387 Fink et al. Oct 2015 B2
9179336 Fink et al. Nov 2015 B2
9191081 Hinman et al. Nov 2015 B2
D752566 Hinman et al. Mar 2016 S
9295103 Fink et al. Mar 2016 B2
9362629 Hinman et al. Jun 2016 B2
9391375 Bales et al. Jul 2016 B1
9407012 Shtrom et al. Aug 2016 B2
9431702 Hartenstein Aug 2016 B2
9504049 Hinman et al. Nov 2016 B2
9531114 Ramos et al. Dec 2016 B2
9537204 Cheng et al. Jan 2017 B2
9693388 Fink et al. Jun 2017 B2
9780892 Hinman et al. Oct 2017 B2
9843940 Hinman et al. Dec 2017 B2
9871302 Hinman et al. Jan 2018 B2
9888485 Hinman et al. Feb 2018 B2
20010033600 Yang et al. Oct 2001 A1
20020102948 Stanwood et al. Aug 2002 A1
20020159434 Gosior et al. Oct 2002 A1
20030013452 Hunt et al. Jan 2003 A1
20030027577 Brown et al. Feb 2003 A1
20030169763 Choi et al. Sep 2003 A1
20030222831 Dunlap Dec 2003 A1
20030224741 Sugar et al. Dec 2003 A1
20040002357 Benveniste Jan 2004 A1
20040029549 Fikart Feb 2004 A1
20040120277 Holur et al. Jun 2004 A1
20040196812 Barber Oct 2004 A1
20040196813 Ofek et al. Oct 2004 A1
20040240376 Wang et al. Dec 2004 A1
20040242274 Corbett et al. Dec 2004 A1
20050032479 Miller et al. Feb 2005 A1
20050058111 Hung et al. Mar 2005 A1
20050124294 Wentink Jun 2005 A1
20050143014 Li et al. Jun 2005 A1
20050195758 Chitrapu Sep 2005 A1
20050227625 Diener Oct 2005 A1
20050254442 Proctor, Jr. et al. Nov 2005 A1
20050271056 Kaneko Dec 2005 A1
20060072518 Pan et al. Apr 2006 A1
20060098592 Proctor, Jr. et al. May 2006 A1
20060099940 Pfleging et al. May 2006 A1
20060132359 Chang et al. Jun 2006 A1
20060132602 Muto et al. Jun 2006 A1
20060172578 Parsons Aug 2006 A1
20060187952 Kappes et al. Aug 2006 A1
20060211430 Persico Sep 2006 A1
20070001910 Yamanaka et al. Jan 2007 A1
20070019664 Benveniste Jan 2007 A1
20070035463 Hirabayashi Feb 2007 A1
20070060158 Medepalli et al. Mar 2007 A1
20070132643 Durham et al. Jun 2007 A1
20070173199 Sinha Jul 2007 A1
20070173260 Love et al. Jul 2007 A1
20070210974 Chiang Sep 2007 A1
20070223701 Emeott et al. Sep 2007 A1
20070238482 Rayzman et al. Oct 2007 A1
20070255797 Dunn et al. Nov 2007 A1
20070268848 Khandekar et al. Nov 2007 A1
20080109051 Splinter et al. May 2008 A1
20080112380 Fischer May 2008 A1
20080192707 Xhafa et al. Aug 2008 A1
20080218418 Gillette Sep 2008 A1
20080242342 Rofougaran Oct 2008 A1
20090046673 Kaidar Feb 2009 A1
20090052362 Meier et al. Feb 2009 A1
20090075606 Shtrom et al. Mar 2009 A1
20090232026 Lu Sep 2009 A1
20090233475 Mildon et al. Sep 2009 A1
20090291690 Guvenc et al. Nov 2009 A1
20090315792 Miyashita et al. Dec 2009 A1
20100029282 Stamoulis et al. Feb 2010 A1
20100046650 Jongren et al. Feb 2010 A1
20100067505 Fein et al. Mar 2010 A1
20100085950 Sekiya et al. Apr 2010 A1
20100091818 Sen et al. Apr 2010 A1
20100103065 Shtrom et al. Apr 2010 A1
20100103066 Shtrom et al. Apr 2010 A1
20100136978 Cho et al. Jun 2010 A1
20100151877 Lee et al. Jun 2010 A1
20100167719 Sun Jul 2010 A1
20100171665 Nogami Jul 2010 A1
20100171675 Borja et al. Jul 2010 A1
20100189005 Bertani et al. Jul 2010 A1
20100202613 Ray et al. Aug 2010 A1
20100210147 Hauser Aug 2010 A1
20100216412 Rofougaran Aug 2010 A1
20100238083 Malasani Sep 2010 A1
20100315307 Syed et al. Dec 2010 A1
20100322219 Fischer et al. Dec 2010 A1
20110006956 McCown Jan 2011 A1
20110028097 Memik et al. Feb 2011 A1
20110032159 Wu et al. Feb 2011 A1
20110044186 Jung et al. Feb 2011 A1
20110103309 Wang et al. May 2011 A1
20110111715 Buer et al. May 2011 A1
20110133996 Alapuranen Jun 2011 A1
20110170424 Safavi Jul 2011 A1
20110172916 Pakzad et al. Jul 2011 A1
20110182260 Sivakumar et al. Jul 2011 A1
20110182277 Shapira Jul 2011 A1
20110194644 Liu et al. Aug 2011 A1
20110241969 Zhang et al. Oct 2011 A1
20110243291 McAllister et al. Oct 2011 A1
20120008542 Koleszar et al. Jan 2012 A1
20120040700 Gomes et al. Feb 2012 A1
20120057533 June11 et al. Mar 2012 A1
20120093091 Kang Apr 2012 A1
20120115487 Josso May 2012 A1
20120134280 Rotvold et al. May 2012 A1
20120140651 Nicoara et al. Jun 2012 A1
20120238201 Du et al. Sep 2012 A1
20120263145 Marinier et al. Oct 2012 A1
20120282868 Hahn Nov 2012 A1
20120299789 Orban et al. Nov 2012 A1
20120314634 Sekhar Dec 2012 A1
20130003645 Shapira et al. Jan 2013 A1
20130005350 Campos et al. Jan 2013 A1
20130023216 Moscibroda et al. Jan 2013 A1
20130064161 Hedayat et al. Mar 2013 A1
20130082899 Gomi Apr 2013 A1
20130095747 Moshfeghi Apr 2013 A1
20130128858 Zou et al. May 2013 A1
20130176902 Wentink et al. Jul 2013 A1
20130182652 Tong et al. Jul 2013 A1
20130195081 Merlin et al. Aug 2013 A1
20130210457 Kummetz Aug 2013 A1
20130223398 Li Aug 2013 A1
20130271319 Trerise Oct 2013 A1
20130286950 Pu Oct 2013 A1
20130286959 Lou et al. Oct 2013 A1
20130288735 Guo Oct 2013 A1
20130301438 Li et al. Nov 2013 A1
20130322276 Pelletier et al. Dec 2013 A1
20130322413 Pelletier et al. Dec 2013 A1
20140024328 Balbien et al. Jan 2014 A1
20140051357 Steer et al. Feb 2014 A1
20140098748 Chan et al. Apr 2014 A1
20140145890 Ramberg et al. May 2014 A1
20140185494 Yang et al. Jul 2014 A1
20140191918 Cheng et al. Jul 2014 A1
20140198867 Sturkovich et al. Jul 2014 A1
20140206322 Dimou et al. Jul 2014 A1
20140225788 Schulz Aug 2014 A1
20140233613 Fink et al. Aug 2014 A1
20140235244 Hinman Aug 2014 A1
20140253378 Hinman Sep 2014 A1
20140253402 Hinman et al. Sep 2014 A1
20140254700 Hinman et al. Sep 2014 A1
20140256166 Ramos et al. Sep 2014 A1
20140320306 Winter Oct 2014 A1
20140320377 Cheng et al. Oct 2014 A1
20140355578 Fink et al. Dec 2014 A1
20140355584 Fink et al. Dec 2014 A1
20150002335 Hinman et al. Jan 2015 A1
20150015435 Shen et al. Jan 2015 A1
20150215952 Hinman et al. Jul 2015 A1
20150256275 Hinman et al. Sep 2015 A1
20150263816 Hinman et al. Sep 2015 A1
20150319584 Fink et al. Nov 2015 A1
20150321017 Perryman et al. Nov 2015 A1
20150325945 Ramos et al. Nov 2015 A1
20150365866 Hinman et al. Dec 2015 A1
20160149634 Kalkunte et al. May 2016 A1
20160149635 Hinman et al. May 2016 A1
20160211583 Lee et al. Jul 2016 A1
20160338076 Hinman et al. Nov 2016 A1
20160365666 Ramos et al. Dec 2016 A1
20160366601 Hinman et al. Dec 2016 A1
20170048647 Jung et al. Feb 2017 A1
20170201028 Eberhardt et al. Jul 2017 A1
20170238151 Fink et al. Aug 2017 A1
20170294975 Hinman et al. Oct 2017 A1
20180034166 Hinman Feb 2018 A1
20180035317 Hinman et al. Feb 2018 A1
Foreign Referenced Citations (12)
Number Date Country
104335654 Feb 2015 CN
303453662 Nov 2015 CN
105191204 Dec 2015 CN
1384285 Jun 2007 EP
002640177 Feb 2015 EP
2268033 Dec 1993 GB
WO2014137370 Sep 2014 WO
WO2014138292 Sep 2014 WO
WO2014193394 Dec 2014 WO
WO2015112627 Jul 2015 WO
WO2017123558 Jul 2017 WO
WO2018022526 Feb 2018 WO
Non-Patent Literature Citations (15)
Entry
Notice of Allowance dated Sep. 8, 2015 in Chinese Design Patent Application 201530058063.8, filed Mar. 11, 2015.
International Search Report and Written Opinion of the International Search Authority dated Nov. 26, 2013 in Patent Cooperation Treaty Application No. PCT/US2013/047406, filed Jun. 24, 2013.
International Search Report and Written Opinion of the International Search Authority dated Aug. 9, 2013 in Patent Cooperation Treaty Application No. PCT/US2013/043436, filed May 30, 2013.
International Search Report and Written Opinion of the International Search Authority dated Jul. 1, 2014 in Patent Cooperation Treaty Application No. PCT/US2014/020880, filed Mar. 5, 2014.
International Search Report and Written Opinion of the International Search Authority dated Jun. 29, 2015 in Patent Cooperation Treaty Application No. PCT/US2015/012285, filed Jan. 21, 2015.
Hinman et al., U.S. Appl. No. 61/774,632, filed Mar. 7, 2013.
First Official Notification dated Jun. 15, 2015 in Chinese Design Patent Application 201530058063.8, filed Mar. 11, 2015.
Final Office Action, dated Jun. 22, 2017, U.S. Appl. No. 14/657,942, filed Mar. 13, 2015.
Non-Final Office Action, dated Jul. 5, 2017, U.S. Appl. No. 14/848,202, filed Sep. 8, 2015.
Notice of Allowance, dated Jul. 31, 2017, U.S. Appl. No. 14/833,038, filed Aug. 21, 2015.
Weisstein, Eric “Electric Polarization”, Retrieved from the Internet [retrieved Mar. 23, 2007] available at <http://scienceworld.wolfram.com/physics/ElectricPolarization.html>, 1 page.
Liu, Lingjia et al., “Downlink MIMO in LTE-Advanced: SU-MIMO vs. MU-MIMO,” IEEE Communications Magazine, Feb. 2012, pp. 140-147.
International Search Report and “Written Opinion of the International Searching Authority,” Patent Cooperation Treaty Application No. PCT/US2017/012884, dated Apr. 6, 2017, 9 pages.
“Office Action,” Chinese Patent Application No. 201580000078.6, dated Nov. 3, 2017, 5 pages [10 pages including translation].
“International Search Report” and “Written Opinion of the International Searching Authority,” Patent Cooperation Treaty Application No. PCT/US2017/043560, dated Nov. 16, 2017, 11 pages.
Related Publications (1)
Number Date Country
20150327272 A1 Nov 2015 US
Provisional Applications (1)
Number Date Country
61766667 Feb 2013 US
Continuations (1)
Number Date Country
Parent 14183445 Feb 2014 US
Child 14802816 US