The present disclosure relates to tools and a kit for the manufacture of wigs and hairpieces.
Wigs and hairpieces are worn by both genders for a variety of reasons, including but not limited to, medical (e.g., illness, untoward effects of chemotherapy, alopecia), personal (e.g., fashion accessory), and professional (e.g., theater, television journalists and others in the public eye). Wigs and hairpieces, however, are expensive, and often require sophisticated equipment. Finding an inexpensive wig that is comfortable and undetectable can be an exhausting process. Hand-tied wigs, on the other hand, are well-known to fit and provide a more natural look.
Hand-tied wigs can be customized to fit the head more naturally, eliminate the search for a wig that not only fits a particular head shape, but can also be designed to have the look of natural hair, color, style, texture and hairline, and to be lighter. Making a wig by hand can be a tedious process. The currently available tools used in the manufacture of hand-tied wigs are difficult to use for some wigmakers, especially beginners. Machines for making wigs are expensive and are not practical for individual wigmakers. A need exists in the field of wig manufacture for tools and a kit for fixing a plurality of hairs to a substrate (e.g., wig cap) that is easy to use by wigmakers, including beginners and those with a decreased dexterity, that reduce frustration, and save time and money.
The invention concerns a tool for fixing fibers to a substrate. The tool comprises a shaft having first and second ends. In one example embodiment the tool has a slot that extends from the first end of the shaft lengthwise therealong. The slot has an open end for receiving the fibers. A first opening extends transversely to the shaft and intersects the slot. In an example embodiment the first opening is wider than the slot and has a diameter from 120 μm to 510 μm. In a further example embodiment a second opening extends transversely to the shaft and intersects the slot. The second opening is wider than the slot in spaced relation away from the first opening. The first and second openings have a circular cross section.
In an example embodiment the tool comprises first and second guide surfaces. The first and second guide surfaces are positioned at the first end of the shaft with the second guide surface adjacent to the first guide surface. Both guide surfaces are angularly oriented with respect to a longitudinal axis of the slot. The slot has a width from 50 μm to 500 μm. In one example embodiment, the first and second guide surfaces terminate in first and second rounded edges, respectively, at the first end of the shaft. The shaft is curved.
The invention further encompasses a tool for fixing fibers to a substrate comprising a container defining a volume and having a smooth curved inner surface. In an example embodiment the container has a bulbous shape. A tube extends from the container. The tube defines a smooth bore in fluid communication with the volume. The diameter of the tube is from 50 μm to 500 μm. The tube has an open end for receiving the fibers opposite to the container. In an example embodiment the ends of the fibers are inserted through the tube into the container, engage the smooth curved inner surface of the container and are guided back into the tube.
In one example embodiment the tool comprises at least one projection that extends outwardly from the tube. In a further example embodiment the tool comprises a plurality of projections extending outwardly from the tube. Projections are positioned at the open end of the tube.
The invention further encompasses a kit for fixing fibers to a substrate. The kit comprises a tool and a stand. The stand holds fibers and comprises a base and at least one projection. The projection extends transversely to the base. In an example embodiment the kit comprises a first and second tool. In one example embodiment the first tool comprises a shaft having a first end and a second end. A slot extends from the first end of the shaft lengthwise therealong. The slot has an open end for receiving the fibers. A first opening extends transversely to the shaft and intersects the slot. The first opening is wider than the slot. In one embodiment the second tool comprises a container defining a volume and having a smooth curved inner surface. A tube extends from the container. The tube defines a smooth bore in fluid communication with the volume. The tube has an open end opposite to the container for receiving the fibers. The ends of the fibers are inserted through the tube into the container, engage the smooth curved inner surface and are guided back into the tube.
As shown in
Referring to
As shown in an enlarged view in
As shown in
Referring to
Referring to tool 10 and 72, the diameter of slot 18 is sufficient to allow fibers to be readily placed in and released from the open end 20 without any restrictions. In certain embodiments, the diameter of slot 18 is about between 0.002 to 0.020 inches (e.g., 50 μm to 500 μm). The slot 18 may extend the full length or a portion of the length of the first end 14. The open end 20 of slot 18 is of a sufficient diameter to accommodate a plurality of fibers without snagging or breaking the fibers. In certain embodiments, the diameter of open end 20 is between 0.03 and 0.10 inches.
Fibers passing through slot 18 via open end 20 intersect with the first opening 22 at the first end 14 or 76 of the tool 10 or 72, respectively. In an example embodiment, fibers continue to pass through slot 18 reaching the second opening 24. The diameter of the second opening 24 is wider than slot 18. The diameter of first and second openings 22 and 24 is 0.005 to 0.025 inches (e.g., 120 μm to 635 μm).
The first and second openings 22 and 24 have circular cross sections, and secure fibers such that the fibers can move freely within said openings 22 and 24. The diameter of the first and second openings 22 and 24 is greater than the diameter of the fibers passing through the slot 18. In certain embodiments, the first opening 22 may be partially covered by an optional latch angled inwardly to deflect the passage of fibers into the second opening 24. The latch, manufactured from a resilient material, also serves to reduce the escape of any fibers unintentionally from tools 10 and 72.
Tools 10 and 72 can be manufactured from a variety of materials, including, for example, metal and plastic. In an example embodiment, tools 10 and 72 are formed using stainless steel. Stainless steel is strong, durable and resistant to corrosion during use and storage. In certain embodiments, tools 10 and 72 are manufactured from a single type of material having a consistent composition throughout. In further embodiments, tools 10 and 72 are formed using more than one type of material joined together, such that different materials are selected to provide individual elements of tool 10 or tool 72 for optimal performance.
During manufacture, tools 10 and 72 are shaped and hardened. Hardening can be accomplished using heat. The temperature and duration required to harden tools 10 and 72 depend on the type of material used for manufacture. Examples of techniques useful in the manufacture of tools 10 and 72 include but are not limited to stamping, laser, electronic discharge machining or combinations thereof. Tools 10 and 72 are then be ground and polished, followed by one or more coatings. Examples of coating materials include gold plating, nickel, silicon or similar materials.
Container 32 has a bulbous shape. The height of container 32 is between 2 to 6 inches. The diameter of the container 32 is generally less than the height. The smooth curved inner surface 34 is capable of guiding fibers through the container 32 without capturing or snagging the fibers.
Tube 38 further comprises at least one projection 44 extending outwardly from the tube 38. In certain embodiments, tube 38 comprises a plurality of projections 44 that extend outwardly from the tube 38. The one or more projections 44 may be positioned near the open end 42 of the tube 38. The projections 44 are relatively rounded or angled and of an adequate size to provide support for holding tool 30.
Tube 38 is relatively firm with some flexibility. The length of the tube 38 is about 1 to 3 inches having an inner diameter of about between 0.002 to 0.020 inches (e.g., 50 μm to 500 μm). The inner diameter of the tube 38 and the diameter of the open end 42 are sufficient to accommodate one to two fibers. In certain embodiments, the diameter of the open end 42 is about between 0.002 to 0.020 inches (e.g., 50 μm to 500 μm).
The movement of at least one hair through the inside of tool 30 is smooth and without barrier or difficulty. The at least one projection 44 is used to hold the tool 30 and allow the receipt and release of at least one fiber through the open end 42 of the tube 38.
Tool 30 is manufactured using one or more resilient material(s). In an example embodiment tool 30 is manufactured using one material via a single molding operation. Different elements of tool 30 can be produced as one or more separate parts that then can be joined by an available method including gluing or press fit mounting. For example, tool 30 may be manufactured by forming the container 32 and tube 38 in one operation followed by optionally joining the at least one projection 44 in a second operation.
Tool 30 is produced using any suitable polymeric material. Features of such material(s) include but are not limited to 1) resilience, to give the container 32 elastic properties, and softness of tube 38 to minimize or avoid damaging the hair; 2) moldability, to provide a simple and inexpensive production; and 3) resistance to chemicals and sterilization. The material can be transparent to permit easy inspection of the inside of tool 30. An example of a suitable material includes but is not limited to silicone.
Referring to
A kit 46 for fixing fibers, such as natural hair, to a substrate, comprising one or more tools described herein, and a stand 48 for holding the fibers. In an example embodiment, the kit 46 comprises a first tool 10 and/or 72 and a second tool 30.
The article of manufacture can further include, for example, packaging materials, instructions for use (e.g., written or visual materials), plurality of hair samples, and netting. The kit 46 for making a wig can also include a legend (e.g., a printed label or insert or other medium describing the product's use (e.g., an audio- or videotape)). The legend can be associated with the container or packaging (e.g., affixed to the container or packaging) and can describe the manner in which the kit 46 comprises at least one tool 10, 30 and/or 72 or a combination thereof and stand 48 that can be used either together or individually.
The kit 46 or any of the tools 10, 30 and/or 72 described herein are useful in making hand-tied wigs. The tools 10, 30 and/or 72 used either alone or together simplify the traditional ventilating method for making a hand-tied wig; making the procedure easier and quicker, for instance, by permitting the wigmaker to have a free hand to carry out other tasks during the process.
Using tool 10, the wigmaker holds the shaft 12 in one hand while the other hand inserts one or more fibers (not shown) into slot 18 of the first end 14 through open end 20. Guide surfaces 68 and 70 direct the fibers to the first opening 22. Once the fibers enter the first opening 22, they are then manually pulled through the first opening 22 until about the midpoint of the length of the fibers is reached resulting in a U-shaped configuration with the “U” portion in the first opening 22. If using the stand 48, one end of the fibers may be secured to one of the projections 52 while the other end is free or unattached.
To secure the fibers to the substrate, for example, a wig cap, one of the guide surfaces 26 or 28 is placed under the netting opening selected on the wig cap. The edge 26 or 28 corresponding to the guide surface 68 or 70 is inserted and passed upwards and completely through the netting opening such that the “U” portion and tool 10 is through the netting opening and the ends of the fibers remain on the other side of the netting opening. Next, tool 10 moved is to meet the fiber ends to complete at least one knot (e.g., single knot, double knot, interlocking knot) thereby fixing the one or more fibers to the wig cap. In addition, tool 10 may be used to prepare extensions on hair (e.g., natural hair), for example, on flat braids and corn rolls.
A knot is made by passing the fibers through the U-shaped portion of fibers extending therefrom tool 10. Optional hook may be used to complete the knot. In an example embodiment the hook on the second end 16 of the shaft 12 is passed through the U-shaped portion of fibers extending from tool 10, forming the knot. Prior to tightening the knot, the fibers may be released from the first end 14 of the shaft 12. Any fibers secured to stand 48 are cut.
Following the steps described above, a knot may also be formed with fibers unattached to stand 48 or fibers that are cut before forming the knot. To fix fibers to the substrate, the free ends of the fibers are wrapped around the first end 14 of the shaft 12 or optional hook, and then tool 10 is pulled away from knot, thereby tightening the knot.
Using tool 72 to fixing fibers to a substrate, such as a wig cap, is carried out similar to tool 10. First, the wigmaker holds the shaft 74 in one hand while the other hand inserts one or more fibers (not shown) into slot 18 of the first end 76 through open end 20. Guide surfaces 80 and 82 direct the fibers to the first opening 22. Once the fibers enter the first opening 22, they are then manually pulled through the first opening 22 until about the midpoint of the length of the fibers is reached resulting in a U-shaped configuration with the “U” portion in the first opening 22. If using the stand 48, one end of the fibers may be secured to one of the projections 52 while the other end is free or unattached.
Next, guide surface 80 or 82 is placed under the netting opening selected on the wig cap. The edge 84 or 86 corresponding to the guide surface 80 or 82 is inserted and passed upwards and completely through the netting opening such that the “U” portion and tool 72 is through the netting opening and the ends of the fibers remain on the other side of the netting opening. Tool 72 is then moved to meet the fiber ends to complete at least one knot as described above thereby fixing the one or more fibers to the wig cap. In addition, tool 72 may be used to prepare extensions on hair (e.g., natural hair), for example, on flat braids and corn rolls.
When making a wig or hairpiece, tool 30 is generally used to fix hairs close to or near the hair line. Using tool 30, the wigmaker will use one hand to grip the tube 38 and the other hand to insert one to two fibers (not shown) into the smooth bore 40 of the tube 38 through open end 42. Open end 42 is manually adjusted by gently squeezing tube 38. Projection 42 may help the wigmaker maintain his or her grip on tube 38 while inserting fibers into tool 30 and securing the fibers to the substrate. The fibers are advanced through the smooth bore 40 reaching the volume 34 of container 32. With continued advancement, the fibers will reverse direction resulting in a U-shaped configuration with the “U” portion in the bottom of the container 32 with the free fiber ends exiting the open end 42 of the tube 38.
To secure fibers to the substrate, knots are made as described for tools 10 and 72 (see above). Briefly, the container 32 is positioned under an opening of the netting and inserted through the netting opening completely passing through such that tool 30 is on the opposite side of the netting opening. The unattached fibers or those secured to the stand 48 remain on the other side of the netting opening. Tool 30 is moved to meet the fibers to make at least one knot by passing the fibers through the U-shape portion of fibers extending therefrom. The fibers are then released from tool 30 either before or after the knot is formed or at any time after tool 30 is completely passed through the netting opening. The projection 52 may assist the wigmaker by permitting the free hand to bring fibers toward tool 30 to place in the U-shaped loop.
Stand 48 may be used with any of the tools 10, 30 and 72 described herein. Choosing to use one or more projections 52 depends on the type of wig or hairpiece to be created and/or the form the fibers being used (see below). Once selected, the projection 52 is secured to base 50. Using a weft, the bound end of the weft is secured to projection 52 via at least one movable clamp 56. The number of movable clamps 56 selected and their position on projection 52 is determined by the width of the weft. In certain embodiments, the projection 52 may have a beveled first end 62 for maintaining weaving thread or hair bundles not secured to a weft.
The fibers described herein are made from a variety of materials. In an example embodiment, the fibers are hair. Hair is made from any desirable material including synthetic fiber, natural fiber, and animal material. In certain embodiments, the hair is human hair or a synthetic fiber. Examples of synthetic fibers include but are not limited to polyester, acrylic, polyvinyl or other chemical fiber treated for use as artificial hair. Hair may have any diameter, for example, ranging from about 17 μM to 200 μM.
Generally, hair used to make wigs or hairpieces is available in the form of a hair weft. The width of the weft varies. In some instances, the wigmaker may make a weft when hair is in a bundle and not secured on a weft. Weaving thread generally comprises shorter hairs and is available on a spool.
The substrate serves as a foundation that is secured to, for instance, a wig head. Examples of foundations are mesh, nylon, netting, weaving or wig cap. Wig caps are available in a variety of styles. Examples of wig caps include but are not limited to hand-tied, monofilament, lace front and basic.
The tools and stand described herein can be used by anyone including a person with limited eyesight and/or reduced finger dexterity or a novice wigmaker so that the process of manufacturing a wig is easier than the currently available wig making needles and tools.
This application is based upon and claims priority to U.S. Provisional Application No. 62/318,364 filed Apr. 5, 2016 and is hereby incorporated by reference herein.
Number | Name | Date | Kind |
---|---|---|---|
100112 | Boone | Feb 1870 | A |
310118 | Bower | Dec 1884 | A |
559108 | Stimson | Apr 1896 | A |
1293660 | Armstrong | Feb 1919 | A |
1471576 | Skinner | Oct 1923 | A |
1601292 | Burns | Sep 1926 | A |
1875182 | Southwell | Aug 1932 | A |
2042403 | Rivnak | May 1936 | A |
2465636 | Doerr | Mar 1949 | A |
2635444 | Carlson et al. | Apr 1953 | A |
2266749 | Corsillo | Dec 1953 | A |
2677485 | Surbeck | May 1954 | A |
2740568 | Ostergaard | Apr 1956 | A |
3077891 | Lane | Feb 1963 | A |
3581688 | Ketterer | Jun 1971 | A |
3678712 | Singleton | Jul 1972 | A |
3696764 | Merkle | Oct 1972 | A |
3867888 | Morissette | Feb 1975 | A |
3878637 | Flower | Apr 1975 | A |
3927538 | Martella | Dec 1975 | A |
3999877 | Ketterer | Dec 1976 | A |
4092796 | Adams | Jun 1978 | A |
4107953 | Casillo | Aug 1978 | A |
4343321 | Caranicas | Aug 1982 | A |
4577665 | Diesner | Mar 1986 | A |
4750291 | Chilton | Jun 1988 | A |
4784713 | Van Nieulande | Nov 1988 | A |
4886003 | Walker | Dec 1989 | A |
5289834 | Lawrence | Mar 1994 | A |
5657776 | Espenschied | Aug 1997 | A |
5881491 | Kira | Mar 1999 | A |
5881738 | Villani | Mar 1999 | A |
6006965 | Hamann | Dec 1999 | A |
6481149 | Hall, IV | Nov 2002 | B1 |
7168377 | Fukuyama | Jan 2007 | B2 |
D553849 | Snyder | Oct 2007 | S |
8151720 | Turner | Apr 2012 | B2 |
8336559 | Kallabat et al. | Dec 2012 | B2 |
8479541 | Baily | Jul 2013 | B1 |
8578946 | Ellery | Nov 2013 | B2 |
8608763 | Jurbala | Dec 2013 | B1 |
8859926 | Freelove | Oct 2014 | B2 |
8863760 | Verbonac | Oct 2014 | B2 |
8978644 | Springfield-Thomas | Mar 2015 | B2 |
9033196 | Smith | May 2015 | B1 |
20010025446 | Asada | Oct 2001 | A1 |
20030071094 | Shau | Apr 2003 | A1 |
20040134509 | Belton | Jul 2004 | A1 |
20130025181 | Sugano | Jan 2013 | A1 |
20130133240 | Beitzel | May 2013 | A1 |
20140259871 | Sano | Sep 2014 | A1 |
20160057981 | Beecher | Mar 2016 | A1 |
20160242398 | Dampier | Aug 2016 | A1 |
Number | Date | Country | |
---|---|---|---|
20170280801 A1 | Oct 2017 | US |
Number | Date | Country | |
---|---|---|---|
62318364 | Apr 2016 | US |