The present disclosure relates to the field of automobile technology relating to winches, and more particularly to a winch, a rope guide, and a transmission device having a clutch function.
A winch is an onboard device mounted in engineering vehicles, off-road vehicles, and SUV sports cars, and it is mainly used for automobile rescue, loading and unloading, or hoisting goods. The winch is usually provided with a rope guide to guide a rope to avoid from being tangled up. In the related art, a reel of the winch is driven by a motor, and the rope guide is passive, that is, the rope guide has no motor drive. During a process of winding the rope around the reel or releasing the rope from the reel, the rope guide moves along an axial direction of the reel by means of a force of the rope, in which case the rope guiding effect is poor, and the rope and the rope guide are easily damaged due to high friction between the rope and the rope guide.
Embodiments of the present disclosure aim to solve one of the technical problems in the related art at least to some extent.
To this end, embodiments of an aspect of the present disclosure provide a winch, whose rope guide is an active rope guide, thereby having a good rope guiding effect. Moreover, a reel and the rope guide are driven by a common motor, thereby reducing components and parts, simplifying the structure and control, and lowering costs.
Embodiments of another aspect of the present disclosure provide a rope guide.
Embodiments of still another aspect of the present disclosure provide a transmission device.
The winch according to embodiments of the first aspect of the present disclosure includes: a base seat; a reel rotatably provided to the base seat; a rope guide provided to the base seat; a transmission assembly operably connected with the rope guide; and a motor operably connected with the reel to drive the reel to rotate, and configured to drive the rope guide through the transmission assembly.
In the winch according to embodiments of the present disclosure, the rope guide is an active rope guide, bringing about a good rope guiding effect. Moreover, the reel and the rope guide are driven by the same motor, that is, the rope guide does not require a separate power source, which reduces the number of components and parts of the winch, simplifies the structure and control, and lowers costs.
In some embodiments, the winch further includes a transmission device, and the transmission assembly drives the rope guide through the transmission device. The transmission device includes: a sleeve body connected with the rope guide; a transmission shaft rotatably connected to the base seat and passing through the sleeve body, and configured to be driven to rotate by the transmission assembly; and a clutch member mounted on the sleeve body and capable of being engaged with and disengaged from the transmission shaft. When the transmission shaft rotates and is engaged with the clutch member, the clutch member is driven to move the sleeve body in an axial direction of the transmission shaft.
In some embodiments, an outer circumferential surface of the transmission shaft is provided with a bidirectional spiral groove extending in the axial direction of the transmission shaft; the clutch member has a first end and a second end, and the clutch member is movable between an engaged position where the first end of the clutch member is engaged in the spiral groove and a disengaged position where the first end of the clutch member is disengaged from the spiral groove.
In some embodiments, the sleeve body defines a first hole and a second hole therein, the first hole penetrates the sleeve body, and the transmission shaft rotatably passes through the first hole. The second hole has a first end in communication with the first hole and a second end provided with a cover plate, and the first end of the clutch member extends through the cover plate into the second hole.
In some embodiments, the clutch member includes a clutch shaft, an elastic member, and an engagement plate; the elastic member is provided between the cover plate and the clutch shaft to push the clutch shaft toward the transmission shaft; the engagement plate is integrally provided at a first end face of the clutch shaft and can be engaged with or disengaged from the transmission shaft; and a surface of the engagement plate facing the transmission shaft is in a concave arc shape.
In some embodiments, the clutch shaft has a flange, and the elastic member is configured as a coil spring that is fitted over the clutch shaft and located between the cover plate and the flange. The cover plate is provided with a through groove, the clutch shaft is provided with a stop pin, and when the stop pin is aligned with the through groove, the stop pin can extend out of the cover plate through the through groove. When the transmission shaft is engaged with the clutch member, the stop pin is located in the second hole. The stop pin can abut against an upper surface of the cover plate to stop the clutch shaft from moving along an axial direction of the second hole when the transmission shaft is disengaged from the clutch member.
In some embodiments, the transmission assembly is configured as a gear transmission device, and includes a ring gear mounted to the reel and a gear set meshing with the ring gear; the gear set is connected to the transmission shaft to drive the transmission shaft to rotate.
In some embodiments, the gear set includes: a first gear meshing with the ring gear; a second gear mounted to a common shaft together with the first gear; a third gear mounted to the transmission shaft and driven by the second gear; a fourth gear meshing with the second gear; and a fifth gear mounted to a common shaft together with the fourth gear and meshing with the third gear.
In some embodiments, the rope guide includes: a sliding block defining a central cavity penetrating the sliding block in a front-rear direction, and connected with the sleeve body through a safety pin; an upper rope guiding drum rotatably provided in the central cavity; a lower rope guiding drum rotatably provided in the central cavity, and opposite to and spaced apart from the upper rope guiding drum; a rope-arranging sheave shaft; a rope-arranging sheave rotatably mounted to the rope-arranging sheave shaft and located in the central cavity; and an adjustment handle connected with the rope-arranging sheave shaft to adjust the rope-arranging sheave between a tensioned position where a rope L is tensioned and a release position where the rope L is released.
In some embodiments, in the tensioned position, the highest point of a rope-arranging face of the rope-arranging sheave is higher than the lowest point of a rope guiding face of the upper rope guiding drum; in the release position, the highest point of the rope-arranging face of the rope-arranging sheave is lower than the highest point of a rope guiding face of the lower rope guiding drum or is flush with the highest point of the rope guiding face of the lower rope guiding drum.
In some embodiments, the sliding block has a first side wall and a second side wall opposite to each other in a left-right direction, the first side wall is provided with a first elongated slot extending in an up-down direction, and the second side wall is provided with a second elongated slot extending in the up-down direction. The rope-arranging sheave shaft has a first end fitted with the first elongated slot and extending out of the first elongated slot to be connected with the adjustment handle, and has a second end fitted with the second elongated slot and extending out of the second elongated slot to be connected with the adjustment handle. The first elongated slot has an upper end provided with a first recess extending rearwards, and the second elongated slot has an upper end provided with a second recess extending rearwards. In the tensioned position, the first end of the rope-arranging sheave shaft is fitted in the first recess, and the second end of the rope-arranging sheave shaft is fitted in the second recess; in the release position, the first end of the rope-arranging sheave shaft is fitted in a lower end of the first elongated slot, and the second end of the rope-arranging sheave shaft is fitted in a lower end of the second elongated slot.
In some embodiments, the adjustment handle includes a first side plate, a second side plate, and a grip; an upper end of the first side plate and an upper end of the second side plate are both connected to the grip; the first side plate has a lower end connected with the first end of the rope-arranging sheave shaft; and the second side plate has a lower end connected with the second end of the rope-arranging sheave shaft. The first side plate is provided with a first sliding guide groove extending along a length direction of the first side plate, and the second side plate is provided with a second sliding guide groove extending along a length direction of the second side plate. An outer wall face of the first side wall of the sliding block is provided with a first guide pin shaft fitted with the first sliding guide groove, and an outer wall face of the second side wall of the sliding block is provided with a second guide pin shaft fitted with the second sliding guide groove.
In some embodiments, the rope guide further includes an upper guide shaft, a lower guide shaft, a first guide roller, and a second guide roller. The first guide roller and the second guide roller are mounted to the sliding block and located at a front opening of the central cavity, and the first guide roller and the second guide roller extend in the up-down direction and are spaced apart from each other in the left-right direction. The upper rope guiding drum is rotatably mounted to the upper guide shaft and is slidable along an axial direction of the upper guide shaft; the lower rope guiding drum is rotatably mounted to the lower guide shaft and is slidable along an axial direction of the lower guide shaft. The upper guide shaft and the lower guide shaft pass through the sliding block, and the sliding block is slidable along the upper guide shaft and the lower guide shaft.
The rope guide according to embodiments of the second aspect of the present disclosure includes: a sliding block defining a central cavity penetrating the sliding block in a first direction (e.g., front-rear direction), and having a first side wall and a second side wall opposite to each other in a second direction (e.g., left-right direction); an upper rope guiding drum rotatably provided in the central cavity; a lower rope guiding drum rotatably provided in the central cavity, and opposite to and spaced apart from the upper rope guiding drum; a rope-arranging sheave shaft; a rope-arranging sheave rotatably mounted to the rope-arranging sheave shaft and located in the central cavity; and an adjustment handle connected with the rope-arranging sheave shaft to adjust the rope-arranging sheave between a tensioned position where a rope is tensioned and a release position where the rope is released.
For the rope guide according to the embodiments of the present disclosure, by providing the rope-arranging sheave, the upper rope guiding drum, and the lower rope guiding drum, the rope can be tidily wound around and arranged onto the reel; by providing the adjustment handle, the rope-arranging sheave can be conveniently moved between the tensioned position and the release position. In such a way, the structure is simple, the cost is low, and the adjustment is reliable.
In some embodiments, a central axis of the lower rope guiding drum is aligned with a central axis of the upper rope guiding drum in a third direction (e.g., an up-down direction), and the rope-arranging sheave is arranged behind the upper rope guiding drum and the lower rope guiding drum.
In some embodiments, in the tensioned position, the highest point of a rope-arranging face of the rope-arranging sheave is higher than the lowest point of a rope guiding face of the upper rope guiding drum; in the release position, the highest point of the rope-arranging face of the rope-arranging sheave is lower than the highest point of a rope guiding face of the lower rope guiding drum or is flush with the highest point of the rope guiding face of the lower rope guiding drum.
In some embodiments, the first side wall is provided with a first elongated slot extending in a third direction (e.g., an up-down direction), and the second side wall is provided with a second elongated slot extending in the up-down direction. The rope-arranging sheave shaft has a first end fitted with the first elongated slot and extending out of the first elongated slot to be connected with the adjustment handle, and has a second end fitted with the second elongated slot and extending out of the second elongated slot to be connected with the adjustment handle.
In some embodiments, the first elongated slot has an upper end provided with a first recess extending rearwards, and the second elongated slot has an upper end provided with a second recess extending rearwards. In the tensioned position, the first end of the rope-arranging sheave shaft is fitted in the first recess, and the second end of the rope-arranging sheave shaft is fitted in the second recess; in the release position, the first end of the rope-arranging sheave shaft is fitted in a lower end of the first elongated slot, and the second end of the rope-arranging sheave shaft is fitted in a lower end of the second elongated slot.
In some embodiments, the adjustment handle includes a first side plate, a second side plate, and a grip; an upper end of the first side plate and an upper end of the second side plate are both connected to the grip; the first side plate has a lower end connected with the first end of the rope-arranging sheave shaft; and the second side plate has a lower end connected with the second end of the rope-arranging sheave shaft. The first side plate is provided with a first sliding guide groove extending along a length direction of the first side plate, and the second side plate is provided with a second sliding guide groove extending along a length direction of the second side plate. An outer wall face of the first side wall of the sliding block is provided with a first guide pin shaft fitted with the first sliding guide groove, and an outer wall face of the second side wall of the sliding block is provided with a second guide pin shaft fitted with the second sliding guide groove.
In some embodiments, the rope guide further includes a first guide roller and a second guide roller. The first guide roller and the second guide roller are mounted to the sliding block and located at a front opening of the central cavity. The first guide roller and the second guide roller extend in the up-down direction and are spaced apart from each other in the left-right direction.
In some embodiments, the rope guide further includes an upper guide shaft, a lower guide shaft, a first guide roller, and a second guide roller. The first guide roller and the second guide roller are mounted to the sliding block and located at a front opening of the central cavity; the first guide roller and the second guide roller extend in the up-down direction and are spaced apart from each other in the left-right direction. The upper rope guiding drum is rotatably mounted to the upper guide shaft and is slidable along an axial direction of the upper guide shaft; the lower rope guiding drum is rotatably mounted to the lower guide shaft and is slidable along an axial direction of the lower guide shaft; the upper guide shaft and the lower guide shaft pass through the sliding block, and the sliding block is slidable along the upper guide shaft and the lower guide shaft.
The transmission device according to embodiments of the third aspect of the present disclosure includes: a sleeve body; a transmission shaft having an outer circumferential surface provided with a spiral groove, passing through the sleeve body, and configured to be rotatable with respect to the sleeve body; and a clutch member having a first end and a second end, mounted to the sleeve body, and configured to be movable between an engaged position and a disengaged position. In the engaged position, the first end of the clutch member is engaged in the spiral groove, such that the clutch member is driven to move the sleeve body along an axial direction of the transmission shaft when the transmission shaft rotates; and, in the disengaged position, the first end of the clutch member is disengaged from the spiral groove.
For the transmission device according to the embodiments of the present disclosure, since the clutch member cooperates with the transmission shaft, it is possible to disconnect the clutch member with the transmission shaft when the free end of the rope is subjected to an excessive load, such that the transmission shaft no longer drives the rope guide to operate, thereby protecting the transmission shaft.
In some embodiments, the sleeve body has a first hole and a second hole therein; the first hole penetrates the sleeve body, and the second hole is in communication with the first hole; the transmission shaft is rotatably fitted in the first hole, and the clutch member can extend into the first hole through the second hole.
In some embodiments, a central axis of the first hole is orthogonal to a central axis of the second hole, and the central axis of the second hole passes through the center of the first hole.
In some embodiments, a central axis of the transmission shaft coincides with the central axis of the first hole.
In some embodiments, the second hole has a first portion in communication with the first hole, and the second hole has a second portion that is provided with a cover plate, and the first end of the clutch member passes through the cover plate and extends into the second hole.
In some embodiments, the clutch member includes a clutch shaft, an elastic member, and an engagement plate; the elastic member is arranged between the cover plate and the clutch shaft to push the clutch shaft toward the transmission shaft; and the engagement plate is arranged at a first end of the clutch shaft and can be engaged with or disengaged from the spiral groove.
In some embodiments, the engagement plate is integrally provided at a first end face of the clutch shaft, and a surface of the engagement plate facing the transmission shaft is in a concave arc shape.
In some embodiments, the clutch shaft has a flange, and the elastic member is configured as a coil spring that is fitted over the clutch shaft and located between the cover plate and the flange; the cover plate is provided with a through groove, the clutch shaft is provided with a stop pin, and when the stop pin is aligned with the through groove, the stop pin can extend out of the cover plate through the through groove; in the engaged position, the stop pin is located in the second hole; in the disengaged position, the stop pin abuts against an upper surface of the cover plate to stop the clutch shaft from moving along an axial direction of the second hole.
In some embodiments, the clutch shaft has a second end provided with a clutch handle, and the cover plate is threaded in the second end of the second hole.
In some embodiments, the spiral groove is configured as a bidirectional spiral groove.
Embodiments of the present disclosure will be described in detail hereinafter and examples of the embodiments will be illustrated in the drawings. The embodiments described below with reference to the drawings are illustrative and are used to generally understand the present disclosure. The embodiments shall not be construed to limit the present disclosure. In the specification, it is to be understood that terms such as “central,” “longitudinal,” “transverse,” “length,” “width,” “thickness,” “upper,” “lower,” “front,” “rear,” “left,” “right,” “vertical,” “horizontal,” “top,” “bottom,” “inner,” “outer,” “clockwise,” “counterclockwise,” “axial,” “radial,” and “circumferential” should be construed to refer to the orientation or position relationship as then described or as shown in the drawings under discussion. These relative terms are for convenience of description and do not indicate or imply that the present disclosure have a particular orientation, or be constructed and operated in a particular orientation. Thus, these terms shall not be construed to limit the present disclosure.
A winch according to embodiments of the present disclosure will be described below with reference to
As illustrated in
In the winch, according to embodiments of the present disclosure, the rope guide 5 is an active rope guide, that is, the rope guide is driven by the motor 7, thereby resulting in a good rope guiding effect. Moreover, the reel 2 and the rope guide 5 are driven by the same motor 7, that is, the rope guide 5 does not require a separate power source, which reduces the number of components and parts, simplifies the structure and control, and lowers costs.
In some embodiments, the winch also includes a transmission device 4, and the transmission assembly 3 drives the rope guide 5 by the transmission device 4. Specifically, in such embodiments, the transmission device 4 connects the transmission assembly 3 with the rope guide 5, whereby the motor 7 drives the rope guide 5 through the transmission assembly 3 and the transmission device 4 in sequence.
The transmission device 4, according to embodiments of the present disclosure, will be described in detail below with reference to the drawings.
As illustrated in
The clutch member 43 is mounted on the sleeve body 41, and the clutch member 43 can be engaged with and disengaged from the transmission shaft 42. When the transmission shaft 42 rotates and is engaged with the clutch member 43, the transmission shaft 42 drives the clutch member 43 to move in an axial direction of the transmission shaft 42 (e.g., a left-right direction in
The transmission device 4 according to embodiments of the present disclosure has a clutch function, and the clutch member 43 is engaged with the transmission shaft 42 to drive the rope guide 5 through the transmission shaft 42. Since the strength bearable by the transmission shaft 42 is limited, the transmission shaft 42 may be easily damaged if the transmission shaft 42 still drives the rope guide 5 in a case of a large load at a free end L1 of the rope L. Thus, the transmission device 4 according to embodiments of the present disclosure can disengage the clutch member 43 from the transmission shaft 42 when the load of the free end L1 of the rope L is large, so as to interrupt the power transmission between the rope guide 5 and the transmission shaft 42, thereby preventing the transmission shaft 42 from being damaged, and prolonging the service life of the transmission device 4.
In some embodiments, an outer circumferential surface of the transmission shaft 42 is provided with a spiral groove 420 extending in the axial direction of the transmission shaft 42. The clutch member 43 has a first end and a second end, and the clutch member 43 is movable between an engaged position and a disengaged position. In the engaged position, as illustrated in
The spiral groove 420 may be a bidirectional spiral groove. When the lower end of the clutch member 43 is engaged in the spiral groove 420, the clutch member 43 reciprocates along the axial direction of the transmission shaft 42 as the transmission shaft 42 rotates. In other words, the transmission shaft 42 may be configured as a bidirectional lead screw.
In some embodiments, the sleeve body 41 has a first hole 410 and a second hole 411 therein. The first hole 410 penetrates the sleeve body 41, and the second hole 411 is in connection with the first hole 410. The transmission shaft 42 is rotatably fitted in the first hole 410, and the clutch member 43 may extend into the first hole 410 through the second hole 411.
In some embodiments, the second hole 411 has a first end in communication with the first hole 410, and a second end provided with a cover plate 44. The first end of the clutch member 43 extends through the cover plate 44 into the second hole 411. In other words, as illustrated in
Specifically, the cover plate 44 is threaded into the second end of the second hole 411 to facilitate removal of the cover plate 44 from the sleeve body 41. A central axis of the first hole 410 is orthogonal to a central axis of the second hole 411, and the central axis of the second hole 411 passes through a center of the first hole 410. A s illustrated in
In some embodiments, the clutch member 43 includes a clutch shaft 431, an elastic member 432, and an engagement plate 433. The elastic member 432 is disposed between the cover plate 44 and the clutch shaft 431 to push the clutch shaft 431 toward the transmission shaft 42, and the engagement plate 433 is disposed at a first end of the clutch shaft 431 and can be engaged with or disengaged from the transmission shaft 42.
As illustrated in
In some embodiments, a surface of the engagement plate 433 facing the transmission shaft 42 is in a concave arc shape. As illustrated in
In a specific example, the engagement plate 433 is integrally provided to a first end face of the clutch shaft 431. In other words, as illustrated in
In some embodiments, the cover plate 44 is provided with a through groove 440, and the clutch shaft 431 is provided with a stop pin 45. The stop pin 45 may extend out of the cover plate 44 through the through groove 440 when aligned with the through groove 440. In the engaged position where the engagement plate 433 is engaged with the spiral groove 420, the stop pin 45 is located in the second hole 411. In the disengaged position where the engagement plate 433 is disengaged from the spiral groove 420, the stop pin 45 abuts against an upper surface of the cover plate 44 to stop the clutch shaft 431 from axially moving along the second hole 411.
In other words, as illustrated in
In some embodiments, the clutch shaft 431 has a second end provided with a clutch handle 46. In other words, as illustrated in
In some embodiments, the transmission assembly 3 is a gear transmission device. The transmission assembly 3 includes a ring gear 30 mounted to the reel 2 and a gear set 31 that meshes with the ring gear 30. The gear set 31 is coupled to the transmission shaft 42 to drive the transmission shaft 42 to rotate. As illustrated in
In some embodiments, the gear set 31 includes a first gear 311, a second gear 312, and a third gear 313. The first gear 311 meshes with the ring gear 30, the second gear 312 and the first gear 311 are mounted to a common shaft, the third gear 313 is mounted to the transmission shaft 42, and the third gear 313 meshes with the second gear 312 to be driven by the second gear 312. Terms such as “first” and “second” are used herein for purposes of description and are not intended to indicate or imply relative importance or significance or to imply the number of indicated technical features. Thus, the feature defined with “first” and “second” may comprise one or more of this feature.
In other words, as illustrated in
In one example, the gear set 31 also includes a fourth gear 314 and a fifth gear 315. The fourth gear 314 meshes with the second gear 312, the fifth gear 315 is mounted on the same shaft as the fourth gear 314, and the fifth gear 315 meshes with the third gear 313. As illustrated in
The gear set 31 is received in a casing 310. In other words, the first gear 311, the connecting shaft 316, the second gear 312, the third gear 313, the fourth gear 314, and the fifth gear 315 are covered by the casing 310 to protect the gear set 31.
The rope guide according to embodiments of the present disclosure will be described in detail below with reference to the drawings.
As illustrated in
The rope guiding drum 51 includes an upper rope guiding drum 511 and a lower rope guiding drum 512. The upper rope guiding drum 511 is rotatably disposed in the central cavity 500, the lower rope guiding drum 512 is rotatably disposed in the central cavity 500, and the lower rope guiding drum 512 is opposite to and spaced apart from the upper rope guiding drum 511. As illustrated in
The rope-arranging sheave 53 is rotatably mounted to the rope-arranging sheave shaft 52 and located in the central cavity 500. Therefore, when the rope L is wound around the reel 2 (e.g., retracting the rope) or unwound from the reel 2 (e.g., releasing the rope), the rope L bypasses the highest point of a rope-arranging face of the rope-arranging sheave 53 and passes through a gap between the upper rope guiding drum 511 and the lower rope guiding drum 512, in which way the rope L is guided.
The adjustment handle 54 is coupled to the rope-arranging sheave shaft 52 to adjust the rope-arranging sheave 53 between a tensioned position where the rope L is tensioned and a release position where the rope L is released. In other words, the adjustment handle 54 is connected to the rope-arranging sheave shaft 52, and by adjusting the adjustment handle 54, the rope-arranging sheave shaft 52 can drive the rope-arranging sheave 53 to move, thereby causing the movement of the rope-arranging sheave 53 between the tensioned position where the rope L is tensioned and the release position where the rope L is released. When the rope is retracted, the rope L is subjected to certain tension to ensure that the rope L is closely arranged on the reel 2. Thus, when the rope is retracted with the free end L1 of the rope L in an unloaded state (e.g., rope retraction under no load), the rope-arranging sheave 53 is in the tensioned position to ensure that the rope L is tidily wound around the reel 2.
For the rope guide, according to the embodiments of the present disclosure, the rope-arranging sheave 53 can be conveniently adjusted by the adjustment handle 54, so as to move between the tensioned position where the rope L is tensioned and the release position where the rope L is released, so that the structure is simple, the cost is low, and the adjustment is reliable.
In one example, the central axis of the lower rope guiding drum 512 is aligned with the central axis of the upper rope guiding drum 511 in the up-down direction. In other words, as illustrated in
In some embodiments, the rope-arranging sheave 53 and the rope guiding drum 51 are offset from each other in the front-rear direction. Specifically, as illustrated in
It could be understood that the rope-arranging sheave 53 is movable in the up-down direction, and the free end L1 of the rope L bypasses the rope-arranging sheave 53 above the rope-arranging sheave 53 and passes between the upper rope guiding drum 511 and the lower rope guiding drum 512. When the rope-arranging sheave 53 moves upwards from the release position to the tensioned position, the distance between the rope-arranging sheave 53 and the upper rope guiding drum 511 in the up-down direction is reduced, thereby tensioning the rope L.
In some embodiments, in the tensioned position, the highest point of the rope-arranging face of the rope-arranging sheave 53 is higher than the lowest point of a rope guiding face of the upper rope guiding drum 511; in the release position, the highest point of the rope-arranging face of the rope-arranging sheave 53 is lower than the highest point of a rope guiding face of the lower rope guiding drum 512 or is substantially flush with the highest point of the rope guiding face of the lower rope guiding drum 512.
In some embodiments, as illustrated in
An upper end of the first elongated slot 503 is provided with a first recess 505 extending rearwards, and an upper end of the second elongated slot 504 is provided with a second recess 506 extending rearwards. In the tensioned position, the first end of the rope-arranging sheave shaft 52 is fitted in the first recess 505, and the second end of the rope-arranging sheave shaft 52 is fitted in the second recess 506. In the release position, the first end of the rope-arranging sheave shaft 52 is fitted in a lower end of the first elongated slot 503, and the second end of the rope-arranging sheave shaft 52 is fitted in a lower end of the second elongated slot 504.
It could be understood that, as illustrated in
In some embodiments, the adjustment handle 54 includes a first side plate 541, a second side plate 542, and a grip 543. An upper end of the first side plate 541 and an upper end of the second side plate 542 are both connected to the grip 543; a lower end of the first side plate 541 is connected with the first end 521 of the rope-arranging sheave shaft 52, and a lower end of the second side plate 542 is connected with the second end 522 of the rope-arranging sheave shaft 52. In other words, as illustrated in
The first side plate 541 is provided with a first sliding guide groove 5410 extending along a length direction of the first side plate 541, and the second side plate 542 is provided with a second sliding guide groove 5420 extending along a length direction of the second side plate 542. An outer wall face of the first side wall 501 of the sliding block 50 (e.g., a right wall face of the first side wall 501 illustrated in
In other words, as illustrated in
Each of the first guide pin shaft 544 and the second guide pin shaft 545 includes a base body and a flange. The base body of the first guide pin shaft 544 is fitted in the first sliding guide groove 5410, and the flange of the first guide pin shaft 544 is located on a right side of the first side plate 541, to allow the first side plate 541 to move forwards and upwards between the first side wall 501 and the flange of the first guide pin shaft 544. The base body of the second guide pin shaft 545 is fitted in the second sliding guide groove 5420, and the flange of the second guide pin shaft 545 is located on a left side of the second side plate 542, to allow the second side plate 542 to move forwards and upwards between the second side wall 502 and the flange of the second guide pin shaft 545.
It could be understood that by manipulating the grip 543, the rope-arranging sheave 53 may be moved between the tensioned position and the release position by means of the first side plate 541 and the second side plate 542. The base body of the first guide pin shaft 544 is slidable in the first sliding guide groove 5410, and the second guide pin shaft 545 is slidable in the second sliding guide groove 5420, so as to guide the movement of the first side plate 541 and the second side plate 542.
In some embodiments, the rope guide 5 further includes a guide roller 55. The guide roller 55 includes a first guide roller 551 and a second guide roller 552. The first guide roller 551 and the second guide roller 552 are mounted to the sliding block 50 and located at a front opening of the central cavity 500. The first guide roller 551 and the second guide roller 552 extend in the up-down direction and are spaced apart from each other in the left-right direction.
In other words, as illustrated in
In some embodiments, the rope guide 5 further includes a guide shaft 56, and the guide shaft 56 includes an upper guide shaft 561 and a lower guide shaft 562. The upper rope guiding drum 511 is rotatably mounted to the upper guide shaft 561 and is slidable along an axial direction of the upper guide shaft 561; the lower rope guiding drum 512 is rotatably mounted to the lower guide shaft 562 and is slidable along an axial direction of the lower guide shaft 562. The upper guide shaft 561 and the lower guide shaft 562 pass through the sliding block 50, and the sliding block 50 is slidable along the upper guide shaft 561 and the lower guide shaft 562.
In other words, as illustrated in
In other words, the upper guide shaft 561 is provided with two telescopic sheaths, and the sheaths are located at the left and right sides of the sliding block 50; the lower guide shaft 562 is also provided with two telescopic sheaths, and the sheaths are located at the left and right sides of the sliding block 50. When the sliding block 50 is adjacent to the left end of the upper guide shaft 561 and the left end of the lower guide shaft 562, the sheath at the left side of the sliding block 50 is compressed, and the sheath at the right side of the sliding block 50 is extended, as illustrated in
In some embodiments, the rope guide 5 further includes a sliding sleeve 58. The sliding sleeve 58 includes an upper sliding sleeve 581 and a lower sliding sleeve 582. The upper sliding sleeve 581 and the lower sliding sleeve 582 are provided in the sliding block 50 and penetrate the sliding block 50. The upper sliding sleeve 581 and the lower sliding sleeve 582 are opposite to and spaced apart from each other. In other words, as illustrated in
The upper rope guiding drum 511 is rotatably fitted over the upper sliding sleeve 581. The upper guide shaft 561 passes through the upper sliding sleeve 581, and the upper sliding sleeve 581 is slidable along the axial direction of the upper guide shaft 561. The lower rope guiding drum 512 is rotatably fitted over the lower sliding sleeve 582. The lower guide shaft 562 passes through the lower sliding sleeve 582, and the lower sliding sleeve 582 is slidable along the axial direction of the lower guide shaft 562.
In other words, as illustrated in
In one example, the rope guide 5 further includes a bushing 59. The bushing 59 includes an upper bushing 591 and a lower bushing 592. The upper bushing 591 and the lower bushing 592 are opposite to and spaced apart from each other. The upper bushing 591 is fitted in the upper sliding sleeve 581, the upper guide shaft 561 passes through the upper bushing 591, and the upper bushing 591 is slidable with respect to the axial direction of the upper guide shaft 561. The lower bushing 592 is fitted in the lower sliding sleeve 582, the lower guide shaft 562 passes through the lower bushing 592, and the lower bushing 592 is slidable with respect to the lower guide shaft 562.
As illustrated in
Two lower bushings 592 are provided and spaced apart in the left-right direction: one of the lower bushings 592 is fitted to a left end of the lower sliding sleeve 582, and the other one of the lower bushings 592 is fitted to a right end of the lower sliding sleeve 582. The lower guide shaft 562 passes through the two lower bushings 592 sequentially.
In some embodiments, the sliding block 50 is connected with the sleeve body 41 by a safety pin 6. The sliding block 50 and the sleeve body 41 are connected by the safety pin 6, and after the load is greater than the strength bearable by the transmission shaft 42, the safety pin 6 can be broken to interrupt the power transmission between the transmission shaft 42 and the sliding block 50, and the transmission shaft 42 can no longer drive the sliding block 50 to move in the left-right direction, thereby ensuring the safety of the transmission shaft 42.
In embodiments of the present disclosure, as illustrated in
In some embodiments, as illustrated in
One end of the upper guide shaft 561 is mounted to the first base plate 11, and the other end of the upper guide shaft 561 sequentially passes through the first side wall 501, the upper rope guiding drum 511, and the second side wall 502, and it is mounted to the second base plate 12. One end of the lower guide shaft 562 is also mounted to the first base plate 11, and the other end of the lower guide shaft 562 sequentially passes through the first side wall 501, the lower rope guiding drum 512, and the second side wall 502, and it is mounted to the second base plate 12.
The operation of the winch according to embodiments of the present disclosure will now be described with reference to
When the free end L1 of the rope L is under no load and the rope L needs to be wound around the reel 2 (e.g., rope retraction under no load), as illustrated in
The rope L bypasses the rope-arranging sheave 53 from above the rope-arranging sheave 53, and passes between the upper rope guiding drum 511 and the lower rope guiding drum 512. Since the highest point of the rope-arranging face of the rope-arranging sheave 53 is higher than the lowest point of the rope guiding face of the upper rope guiding drum 511, the rope L is tensioned and tidily wound around the reel 2.
When the free end L1 of the rope L is under no load and the rope L needs to be unwound from the reel 2 (e.g., rope release under no load), as illustrated in
When the free end L1 of the rope L is under a relatively large load (exceeding the strength bearable by the transmission shaft 42), and the rope L needs to be wound around the reel 2 (rope retraction under a load), as illustrated in
When the free end L1 of the rope L is under a relatively large load (exceeding the strength bearable by the transmission shaft 42), and the rope L needs to be unwound from the reel 2 (rope release under a load), as illustrated in
Reference throughout this specification to “an embodiment,” “some embodiments,” “an example,” “a specific example,” or “some examples,” means that a particular feature, structure, material, or characteristic described in connection with the embodiment or example is included in at least one embodiment or example of the present disclosure. Thus, the appearances of the phrases in various places throughout this specification are not necessarily referring to the same embodiment or example of the present disclosure. Furthermore, the particular features, structures, materials, or characteristics may be combined in any suitable manner in one or more embodiments or examples. Additionally, different embodiments or examples as well as features in different embodiments or examples described in the present disclosure can be combined by those skilled in the art without any contradiction.
In the present disclosure, unless specified or limited otherwise, the terms “mounted,” “connected,” “coupled,” “fixed,” “provided,” and the like are used broadly, and may be, for example, fixed connections, detachable connections, or integral connections; may also be mechanical or electrical connections or mutual communication; may also be direct connections or indirect connections via intervening structures; may also be inner communications of two elements or mutual interaction of two elements, which can be understood by those skilled in the art according to specific situations.
In the present disclosure, unless specified or limited otherwise, a structure in which a first feature is “on” or “below” a second feature may include an embodiment in which the first feature is in direct contact with the second feature, and may also include an embodiment in which the first feature and the second feature are not in direct contact with each other, but are contacted via an additional feature formed therebetween. Furthermore, a first feature “on,” “above,” or “on top of” a second feature may include an embodiment in which the first feature is right or obliquely “on,” “above,” or “on top of” the second feature, or just means that the first feature is at a height higher than that of the second feature; while a first feature “below,” “under,” or “on bottom of” a second feature may include an embodiment in which the first feature is right or obliquely “below,” “under,” or “on bottom of” the second feature, or just means that the first feature is at a height lower than that of the second feature.
Although embodiments of the present disclosure have been shown and described, it would be appreciated by those skilled in the art that the above embodiments are explanatory and cannot be construed to limit the present disclosure, and changes, modifications, alternatives, and variations can be made in the above embodiments without departing from the scope of the present disclosure.
It is intended that the specification, together with the drawings, be considered exemplary only, where exemplary means an example. As used herein, the singular forms “a,” “an,” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. Additionally, the use of “or” is intended to include “and/or,” unless the context clearly indicates otherwise.
While this patent document contains many specifics, these should not be construed as limitations on the scope of any invention or of what may be claimed, but rather as descriptions of features that may be specific to particular embodiments of particular inventions. Certain features that are described in this patent document in the context of separate embodiments can also be implemented in combination in a single embodiment. Conversely, various features that are described in the context of a single embodiment can also be implemented in multiple embodiments separately or in any suitable subcombination. Moreover, although features may be described above as acting in certain combinations and even initially claimed as such, one or more features from a claimed combination can in some cases be excised from the combination, and the claimed combination may be directed to a subcombination or variation of a subcombination.
Similarly, while operations are depicted in the drawings in a particular order, this should not be understood as requiring that such operations be performed in the particular order shown or in sequential order, or that all illustrated operations be performed, to achieve desirable results. Moreover, the separation of various system components in the embodiments described in this patent document should not be understood as requiring such separation in all embodiments.
Only a few implementations and examples are described, and other implementations, enhancements and variations can be made based on what is described and illustrated in this patent document.
Number | Date | Country | Kind |
---|---|---|---|
201910149487.2 | Feb 2019 | CN | national |
201910149493.8 | Feb 2019 | CN | national |
201910149808.9 | Feb 2019 | CN | national |
201910149845.X | Feb 2019 | CN | national |
201920257640.9 | Feb 2019 | CN | national |
201920257882.8 | Feb 2019 | CN | national |
201920258158.7 | Feb 2019 | CN | national |
201920258609.7 | Feb 2019 | CN | national |
This application is a divisional of U.S. application Ser. No. 16/737,667, titled “WINCH, ROPE GUIDE AND TRANSMISSION DEVICE HAVING CLUTCH FUNCTION”, filed Jan. 8, 2020 which claims priority to and benefits of Chinese Patent Application Serial No. 201910149493.8, filed with National Intellectual Property Administration of People's Republic of China (PRC) on Feb. 28, 2019, Chinese Patent Application Serial No. 201920257882.8, filed with National Intellectual Property Administration of PRC on Feb. 28, 2019, Chinese Patent Application Serial No. 201910149845.X, filed with National Intellectual Property Administration of PRC on Feb. 28, 2019, Chinese Patent Application Serial No. 201920257640.9, filed with National Intellectual Property Administration of PRC on Feb. 28, 2019, Chinese Patent Application Serial No. 201910149808.9, filed with National Intellectual Property Administration of PRC on Feb. 28, 2019, Chinese Patent Application Serial No. 201920258158.7, filed with National Intellectual Property Administration of PRC on Feb. 28, 2019, Chinese Patent Application Serial No. 201910149487.2, filed with National Intellectual Property Administration of PRC on Feb. 28, 2019, and Chinese Patent Application Serial No. 201920258609.7, filed with National Intellectual Property Administration of PRC on Feb. 28, 2019, the entire contents of which are incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
7591 | Burdett | Aug 1850 | A |
634385 | Wolfe et al. | Oct 1899 | A |
724155 | Besse | Mar 1903 | A |
752031 | Chadwick | Feb 1904 | A |
817224 | Clifford | Apr 1906 | A |
955658 | Mitchell et al. | Apr 1910 | A |
1063643 | Blake et al. | Jun 1913 | A |
1169140 | Fassett et al. | Jan 1916 | A |
1176538 | Warner | Mar 1916 | A |
1182169 | Hansen | May 1916 | A |
1222127 | Perri | Apr 1917 | A |
1239892 | Dunderdale | Sep 1917 | A |
1242828 | Lyle | Oct 1917 | A |
1250604 | Lorenc | Dec 1917 | A |
1268335 | Fairchild | Jun 1918 | A |
1364697 | Branch | Jan 1921 | A |
1437648 | Gore | Dec 1922 | A |
1449031 | Blake | Mar 1923 | A |
1471972 | Miller | Oct 1923 | A |
1621479 | Cleveland et al. | Mar 1927 | A |
1945702 | Pitter | Feb 1930 | A |
1755942 | Woolson | Apr 1930 | A |
1800162 | Stroud | Apr 1931 | A |
2029745 | Stiner | Feb 1936 | A |
2041640 | Goss | May 1936 | A |
2090445 | Hale et al. | Aug 1937 | A |
2118557 | Hamilton | May 1938 | A |
2122040 | Machovec | Jun 1938 | A |
2125085 | Pool | Jul 1938 | A |
2197266 | Fredell | Apr 1940 | A |
2209576 | McDonald | Jul 1940 | A |
2246986 | Pellegrini | Jun 1941 | A |
2436961 | Gabriel | Mar 1948 | A |
2487921 | Culver | Nov 1949 | A |
2492068 | Schofield et al. | Dec 1949 | A |
2566401 | Bustin | Sep 1951 | A |
2575615 | Crump | Nov 1951 | A |
2583894 | Shuck | Jan 1952 | A |
2645504 | Branstrator et al. | Jul 1953 | A |
2669613 | Despard | Feb 1954 | A |
2678832 | Wright | May 1954 | A |
2682671 | Faure | Jul 1954 | A |
2764422 | McDonald | Sep 1956 | A |
2774494 | Malmström | Dec 1956 | A |
2825582 | McDonald | Mar 1958 | A |
2921643 | Vanderveld | Jan 1960 | A |
2925876 | Wagner | Feb 1960 | A |
2998265 | Kozicki | Aug 1961 | A |
3008533 | Haberle | Nov 1961 | A |
3012633 | Magee | Dec 1961 | A |
3039562 | Wagner | Jun 1962 | A |
3095216 | Browne et al. | Jun 1963 | A |
3164394 | Husko | Jan 1965 | A |
3172499 | Stairs | Mar 1965 | A |
3266594 | Antosh et al. | Aug 1966 | A |
3329443 | Lowder et al. | Jul 1967 | A |
3392990 | Wolf | Jul 1968 | A |
3488066 | Hansen | Jan 1970 | A |
3494634 | De Paula | Feb 1970 | A |
3515406 | Endsley | Jun 1970 | A |
3517942 | Cuffe et al. | Jun 1970 | A |
3522396 | Norden | Jul 1970 | A |
3528574 | Denner et al. | Sep 1970 | A |
3572754 | Fowler | Mar 1971 | A |
3608957 | Maneck | Sep 1971 | A |
3650423 | O'Brien | Mar 1972 | A |
3671058 | Kent | Jun 1972 | A |
3745595 | Nagy | Jul 1973 | A |
3756622 | Pyle et al. | Sep 1973 | A |
3762742 | Bucklen | Oct 1973 | A |
3784227 | Rogge | Jan 1974 | A |
3799288 | Manuel | Mar 1974 | A |
3807757 | Carpenter et al. | Apr 1974 | A |
3833240 | Weiler | Sep 1974 | A |
3853369 | Holden | Dec 1974 | A |
3863890 | Ruffing | Feb 1975 | A |
3865399 | Way | Feb 1975 | A |
3869022 | Wallk | Mar 1975 | A |
3869169 | Johnson et al. | Mar 1975 | A |
3887217 | Thomas | Jun 1975 | A |
3889997 | Schoneck | Jun 1975 | A |
3891261 | Finneman | Jun 1975 | A |
3913497 | Maroshick | Oct 1975 | A |
3915475 | Casella et al. | Oct 1975 | A |
3957284 | Wright | May 1976 | A |
3961809 | Clugston | Jun 1976 | A |
3980319 | Kirkpatrick | Sep 1976 | A |
3981515 | Rosborough | Sep 1976 | A |
3986724 | Rivinius | Oct 1976 | A |
3997211 | Graves | Dec 1976 | A |
4020920 | Abbott | May 1977 | A |
4053172 | McClure | Oct 1977 | A |
4058228 | Hall | Nov 1977 | A |
4068542 | Brand et al. | Jan 1978 | A |
4073502 | Frank et al. | Feb 1978 | A |
4089538 | Eastridge | May 1978 | A |
4098346 | Stanfill | Jul 1978 | A |
4103872 | Hirasuka | Aug 1978 | A |
4106790 | Weiler | Aug 1978 | A |
4110673 | Nagy et al. | Aug 1978 | A |
4116457 | Nerem et al. | Sep 1978 | A |
4124099 | Dudynskyj | Nov 1978 | A |
4145066 | Shearin | Mar 1979 | A |
4164292 | Karkau | Aug 1979 | A |
4168764 | Walters | Sep 1979 | A |
4174021 | Barlock | Nov 1979 | A |
4180143 | Clugston | Dec 1979 | A |
4185849 | Jaeger | Jan 1980 | A |
4188889 | Favrel | Feb 1980 | A |
4194754 | Hightower | Mar 1980 | A |
4205862 | Tarvin | Jun 1980 | A |
4219104 | MacLeod | Aug 1980 | A |
4231583 | Learn | Nov 1980 | A |
4275664 | Reddy | Jun 1981 | A |
4325668 | Julian et al. | Apr 1982 | A |
4369984 | Hagen | Jan 1983 | A |
4424751 | Blochlinger | Jan 1984 | A |
4440364 | Cone et al. | Apr 1984 | A |
4462486 | Dignan | Jul 1984 | A |
4536004 | Brynielsson et al. | Aug 1985 | A |
4542805 | Hamlin et al. | Sep 1985 | A |
4570962 | Chavira | Feb 1986 | A |
4623160 | Trudell | Nov 1986 | A |
D287001 | Jarvie et al. | Dec 1986 | S |
4676013 | Endo | Jun 1987 | A |
4679810 | Kimball | Jul 1987 | A |
4696349 | Harwood et al. | Sep 1987 | A |
D292904 | Bielby | Nov 1987 | S |
4708355 | Tiede | Nov 1987 | A |
4711613 | Fretwell | Dec 1987 | A |
4720116 | Williams et al. | Jan 1988 | A |
4733752 | Sklar | Mar 1988 | A |
4757876 | Peacock | Jul 1988 | A |
4846487 | Criley | Jul 1989 | A |
4858888 | Cruz et al. | Aug 1989 | A |
4909700 | Fontecchio et al. | Mar 1990 | A |
4911264 | McCafferty | Mar 1990 | A |
4926965 | Fox | May 1990 | A |
4930973 | Robinson | Jun 1990 | A |
4958979 | Svensson | Sep 1990 | A |
4982974 | Guidry | Jan 1991 | A |
4991890 | Paulson | Feb 1991 | A |
D316394 | Carr | Apr 1991 | S |
5005667 | Anderson | Apr 1991 | A |
5005850 | Baughman | Apr 1991 | A |
5007654 | Sauber | Apr 1991 | A |
5028063 | Andrews | Jul 1991 | A |
5039119 | Baughman | Aug 1991 | A |
5085450 | DeHart, Sr. | Feb 1992 | A |
5137294 | Martin | Aug 1992 | A |
5154125 | Renner et al. | Oct 1992 | A |
5195609 | Ham et al. | Mar 1993 | A |
5199731 | Martin | Apr 1993 | A |
5228707 | Yoder | Jul 1993 | A |
5228761 | Huebschen et al. | Jul 1993 | A |
5238300 | Slivon et al. | Aug 1993 | A |
5253973 | Fretwell | Oct 1993 | A |
D340905 | Orth et al. | Nov 1993 | S |
5257767 | McConnell | Nov 1993 | A |
5257847 | Yonehara | Nov 1993 | A |
5261779 | Goodrich | Nov 1993 | A |
5280934 | Monte | Jan 1994 | A |
5284349 | Bruns et al. | Feb 1994 | A |
5286049 | Khan | Feb 1994 | A |
5342073 | Poole | Aug 1994 | A |
5358268 | Hawkins | Oct 1994 | A |
5375864 | McDaniel | Dec 1994 | A |
5423463 | Weeks | Jun 1995 | A |
5425615 | Hall et al. | Jun 1995 | A |
5439342 | Hall et al. | Aug 1995 | A |
5462302 | Leitner | Oct 1995 | A |
5478124 | Warrington | Dec 1995 | A |
5498012 | McDaniel et al. | Mar 1996 | A |
5501475 | Bundy | Mar 1996 | A |
5505476 | Maccabee | Apr 1996 | A |
5513866 | Sisson | May 1996 | A |
5538100 | Hedley | Jul 1996 | A |
5538265 | Chen et al. | Jul 1996 | A |
5538269 | McDaniel et al. | Jul 1996 | A |
5547040 | Hanser et al. | Aug 1996 | A |
5549312 | Garvert | Aug 1996 | A |
5584493 | Demski et al. | Dec 1996 | A |
5601300 | Fink et al. | Feb 1997 | A |
5624127 | Arreola et al. | Apr 1997 | A |
5663541 | Mc Gregor, II | Sep 1997 | A |
5697623 | Bermes et al. | Dec 1997 | A |
5697626 | McDaniel | Dec 1997 | A |
5727840 | Ochiai et al. | Mar 1998 | A |
5779208 | McGraw | Jul 1998 | A |
5842709 | Maccabee | Dec 1998 | A |
5876051 | Sage | Mar 1999 | A |
5897125 | Bundy | Apr 1999 | A |
5937468 | Wiedeck et al. | Aug 1999 | A |
5941342 | Lee | Aug 1999 | A |
5957237 | Tigner | Sep 1999 | A |
5980449 | Benson et al. | Nov 1999 | A |
5988970 | Holtom | Nov 1999 | A |
6012545 | Faleide | Jan 2000 | A |
6027090 | Liu | Feb 2000 | A |
6042052 | Smith et al. | Mar 2000 | A |
6050290 | Yacobi | Apr 2000 | A |
6055780 | Yamazaki | May 2000 | A |
6065924 | Budd | May 2000 | A |
6082693 | Benson et al. | Jul 2000 | A |
6082751 | Hanes et al. | Jul 2000 | A |
6112152 | Tuttle | Aug 2000 | A |
6135472 | Wilson et al. | Oct 2000 | A |
6149172 | Pascoe et al. | Nov 2000 | A |
6158756 | Hansen | Dec 2000 | A |
6168176 | Mueller | Jan 2001 | B1 |
6170842 | Mueller | Jan 2001 | B1 |
6179312 | Paschke et al. | Jan 2001 | B1 |
6179546 | Citrowske | Jan 2001 | B1 |
6203040 | Hutchins | Mar 2001 | B1 |
6213486 | Kunz et al. | Apr 2001 | B1 |
6224317 | Kann | May 2001 | B1 |
6264222 | Johnston et al. | Jul 2001 | B1 |
6270099 | Farkash | Aug 2001 | B1 |
6325397 | Pascoe | Dec 2001 | B1 |
6352295 | Leitner | Mar 2002 | B1 |
6357992 | Ringdahl et al. | Mar 2002 | B1 |
6375207 | Dean et al. | Apr 2002 | B1 |
6412799 | Schrempf | Jul 2002 | B1 |
6422342 | Armstrong et al. | Jul 2002 | B1 |
6425572 | Lehr | Jul 2002 | B1 |
6430164 | Jones et al. | Aug 2002 | B1 |
6435534 | Stone | Aug 2002 | B1 |
6439342 | Boykin | Aug 2002 | B1 |
6460915 | Bedi et al. | Oct 2002 | B1 |
6471002 | Weinermen | Oct 2002 | B1 |
6511086 | Schlicht | Jan 2003 | B2 |
6511402 | Shu | Jan 2003 | B2 |
6513821 | Heil | Feb 2003 | B1 |
6533303 | Watson | Mar 2003 | B1 |
6536790 | Ojanen | Mar 2003 | B1 |
6588783 | Fichter | Jul 2003 | B2 |
6612596 | Jeon et al. | Sep 2003 | B2 |
6641158 | Leitner | Nov 2003 | B2 |
6659484 | Knodle et al. | Dec 2003 | B2 |
6663125 | Cheng | Dec 2003 | B1 |
6746033 | McDaniel | Jun 2004 | B1 |
6769704 | Cipolla | Aug 2004 | B2 |
6810995 | Warford | Nov 2004 | B2 |
6812466 | O'Connor et al. | Nov 2004 | B2 |
6830257 | Leitner | Dec 2004 | B2 |
6834875 | Leitner | Dec 2004 | B2 |
6840526 | Anderson et al. | Jan 2005 | B2 |
6874801 | Fichter | Apr 2005 | B2 |
6880843 | Greer, Jr. | Apr 2005 | B1 |
6912912 | Reichinger et al. | Jul 2005 | B2 |
6918624 | Miller et al. | Jul 2005 | B2 |
6926295 | Berkebile et al. | Aug 2005 | B2 |
6938909 | Leitner | Sep 2005 | B2 |
6942233 | Leitner et al. | Sep 2005 | B2 |
6942272 | Livingston | Sep 2005 | B2 |
6948903 | Ablabutyan et al. | Sep 2005 | B2 |
6951357 | Armstrong et al. | Oct 2005 | B2 |
6955370 | Fabiano et al. | Oct 2005 | B2 |
6959937 | Schneider et al. | Nov 2005 | B2 |
6966597 | Tegtmeier | Nov 2005 | B2 |
6971652 | Bobbert et al. | Dec 2005 | B2 |
6997469 | Lanoue et al. | Feb 2006 | B2 |
7000932 | Heil et al. | Feb 2006 | B2 |
7007961 | Leitner | Mar 2006 | B2 |
7017927 | Henderson et al. | Mar 2006 | B2 |
7055839 | Leitner | Jun 2006 | B2 |
7090276 | Bruford et al. | Aug 2006 | B1 |
7111859 | Kim et al. | Sep 2006 | B2 |
7118120 | Lee et al. | Oct 2006 | B2 |
7163221 | Leitner | Jan 2007 | B2 |
7258386 | Leitner | Aug 2007 | B2 |
7287771 | Lee et al. | Oct 2007 | B2 |
7360779 | Crandall | Apr 2008 | B2 |
7367574 | Leitner | May 2008 | B2 |
7380807 | Leitner | Jun 2008 | B2 |
7398985 | Leitner et al. | Jul 2008 | B2 |
7413204 | Leitner | Aug 2008 | B2 |
7416202 | Fichter | Aug 2008 | B2 |
7487986 | Leither et al. | Feb 2009 | B2 |
7516703 | Tazreiter | Apr 2009 | B2 |
7566064 | Leitner et al. | Jul 2009 | B2 |
7584975 | Leitner | Sep 2009 | B2 |
7617840 | Zinda | Nov 2009 | B1 |
7637519 | Leitner et al. | Dec 2009 | B2 |
7673892 | Kuntze et al. | Mar 2010 | B2 |
7717444 | Fichter | May 2010 | B2 |
7793596 | Hirtenlehner | Sep 2010 | B2 |
7823896 | VanBelle | Nov 2010 | B2 |
7874565 | Duncan | Jan 2011 | B2 |
D634687 | Vukel | Mar 2011 | S |
7900944 | Watson | Mar 2011 | B2 |
7909344 | Bundy | Mar 2011 | B1 |
7934737 | Okada | May 2011 | B2 |
7976042 | Watson et al. | Jul 2011 | B2 |
8038164 | Stahl et al. | Oct 2011 | B2 |
8042821 | Yang | Oct 2011 | B2 |
D649100 | Cheng | Nov 2011 | S |
8052162 | Yang et al. | Nov 2011 | B2 |
8056913 | Kuntze et al. | Nov 2011 | B2 |
8070173 | Watson | Dec 2011 | B2 |
8136826 | Watson | Mar 2012 | B2 |
8146935 | Adams | Apr 2012 | B1 |
8157277 | Leitner et al. | Apr 2012 | B2 |
8177247 | Carr | May 2012 | B1 |
8205901 | Yang et al. | Jun 2012 | B2 |
D665713 | Pochurek et al. | Aug 2012 | S |
8262113 | Chafey et al. | Sep 2012 | B1 |
8267379 | Yang et al. | Sep 2012 | B2 |
8297635 | Agoncillo et al. | Oct 2012 | B2 |
D671874 | Kekich et al. | Dec 2012 | S |
8342550 | Stickles et al. | Jan 2013 | B2 |
8342551 | Watson et al. | Jan 2013 | B2 |
8360455 | Leitner et al. | Jan 2013 | B2 |
8408571 | Leitner et al. | Apr 2013 | B2 |
8419034 | Leitner et al. | Apr 2013 | B2 |
8469305 | Feldstein et al. | Jun 2013 | B2 |
8469380 | Yang et al. | Jun 2013 | B2 |
8602431 | May | Dec 2013 | B1 |
8827294 | Leitner et al. | Sep 2014 | B1 |
8833782 | Huotari et al. | Sep 2014 | B2 |
8844957 | Leitner et al. | Sep 2014 | B2 |
D720674 | Stanesic et al. | Jan 2015 | S |
8936266 | Leitner et al. | Jan 2015 | B2 |
8944451 | Leitner et al. | Feb 2015 | B2 |
8973902 | Huang | Mar 2015 | B2 |
9156406 | Stanesic et al. | Oct 2015 | B2 |
9272667 | Smith | Mar 2016 | B2 |
9302626 | Leitner et al. | Apr 2016 | B2 |
9346404 | Bundy | May 2016 | B1 |
9346405 | Leitner et al. | May 2016 | B2 |
9511717 | Smith | Dec 2016 | B2 |
9522634 | Smith | Dec 2016 | B1 |
9527449 | Smith | Dec 2016 | B2 |
9550458 | Smith et al. | Jan 2017 | B2 |
9561751 | Leitner et al. | Feb 2017 | B2 |
9573467 | Chen et al. | Feb 2017 | B2 |
9656609 | Du et al. | May 2017 | B2 |
9669766 | Du et al. | Jun 2017 | B2 |
9669767 | Du et al. | Jun 2017 | B2 |
9688205 | Du et al. | Jun 2017 | B2 |
9701249 | Leitner et al. | Jul 2017 | B2 |
9764691 | Stickles et al. | Sep 2017 | B2 |
9809172 | Stanesic et al. | Nov 2017 | B2 |
9834147 | Smith | Dec 2017 | B2 |
9902328 | Mazur | Feb 2018 | B1 |
9944231 | Leitner et al. | Apr 2018 | B2 |
10053017 | Leitner et al. | Aug 2018 | B2 |
10065486 | Smith et al. | Sep 2018 | B2 |
10077016 | Smith et al. | Sep 2018 | B2 |
10081302 | Frederick et al. | Sep 2018 | B1 |
10093522 | Baugh | Oct 2018 | B1 |
10106069 | Rasekhi | Oct 2018 | B2 |
10106086 | Eckstein et al. | Oct 2018 | B1 |
10106087 | Stojkovic et al. | Oct 2018 | B2 |
10106088 | Smith | Oct 2018 | B2 |
10118557 | Pribisic | Nov 2018 | B2 |
10124839 | Povinelli et al. | Nov 2018 | B2 |
10144345 | Stinson et al. | Dec 2018 | B2 |
10150419 | Derbis et al. | Dec 2018 | B2 |
10155474 | Salter et al. | Dec 2018 | B2 |
10173595 | Ulrich | Jan 2019 | B1 |
10183623 | Kirshnan et al. | Jan 2019 | B2 |
10183624 | Leitner et al. | Jan 2019 | B2 |
10189517 | Povinelli et al. | Jan 2019 | B2 |
10195997 | Smith | Feb 2019 | B2 |
10207598 | Reynolds et al. | Feb 2019 | B2 |
10214963 | Simula et al. | Feb 2019 | B2 |
10384614 | Du et al. | Aug 2019 | B1 |
11155450 | Fan et al. | Oct 2021 | B2 |
11713223 | Zhan | Aug 2023 | B2 |
20030011164 | Cipolla | Jan 2003 | A1 |
20030038446 | Anderson et al. | Feb 2003 | A1 |
20030090081 | Oakley | May 2003 | A1 |
20030094781 | Jaramillo et al. | May 2003 | A1 |
20030132595 | Fabiano | Jul 2003 | A1 |
20030200700 | Leitner | Oct 2003 | A1 |
20040100063 | Henderson et al. | May 2004 | A1 |
20040108678 | Berkebile et al. | Jun 2004 | A1 |
20040135339 | Kim | Jul 2004 | A1 |
20050035568 | Lee et al. | Feb 2005 | A1 |
20050146157 | Leitner | Jul 2005 | A1 |
20050280242 | Fabiano et al. | Dec 2005 | A1 |
20060054731 | Nagler | Mar 2006 | A1 |
20060214386 | Watson | Sep 2006 | A1 |
20060219484 | Ogura | Oct 2006 | A1 |
20060284440 | Leitner | Dec 2006 | A1 |
20080042396 | Watson | Feb 2008 | A1 |
20080100023 | Ross | May 2008 | A1 |
20090250896 | Watson | Oct 2009 | A1 |
20090295114 | Yang et al. | Dec 2009 | A1 |
20100044993 | Watson | Feb 2010 | A1 |
20110065546 | Xie | Mar 2011 | A1 |
20110115187 | Leitner et al. | May 2011 | A1 |
20120025485 | Yang et al. | Feb 2012 | A1 |
20130154230 | Ziaylek | Jun 2013 | A1 |
20150097353 | Rasmussen et al. | Apr 2015 | A1 |
20150197199 | Kuo | Jul 2015 | A1 |
20150321612 | Leitner et al. | Nov 2015 | A1 |
20150321613 | Leitner et al. | Nov 2015 | A1 |
20160016766 | Ho | Jan 2016 | A1 |
20160039346 | Yang et al. | Feb 2016 | A1 |
20160158584 | Burke | Jun 2016 | A1 |
20160193964 | Stanesic et al. | Jul 2016 | A1 |
20170008459 | Leitner et al. | Jan 2017 | A1 |
20170036607 | Du et al. | Feb 2017 | A1 |
20170144606 | Smith | May 2017 | A1 |
20170190308 | Smith | Jun 2017 | A1 |
20170246993 | Smith | Aug 2017 | A1 |
20170267182 | Leitner | Sep 2017 | A1 |
20170355315 | Leitner | Dec 2017 | A1 |
20180118530 | August | May 2018 | A1 |
20180141497 | Smith | May 2018 | A1 |
20180148306 | Zheng | May 2018 | A1 |
20180201194 | Stanesic | Jul 2018 | A1 |
20180215591 | Anderson | Aug 2018 | A1 |
20180257572 | Du et al. | Sep 2018 | A1 |
20180281687 | Derbis et al. | Oct 2018 | A1 |
20180326911 | Leitner | Nov 2018 | A1 |
20190009725 | Stojkovic et al. | Jan 2019 | A1 |
20190047477 | Crandall | Feb 2019 | A1 |
20190054961 | Ngo | Feb 2019 | A1 |
20190071021 | Pribisic | Mar 2019 | A1 |
20190071042 | Smith | Mar 2019 | A1 |
20190084482 | Long et al. | Mar 2019 | A1 |
20190084628 | Povinelli et al. | Mar 2019 | A1 |
20190292026 | Felps | Sep 2019 | A1 |
20190300344 | Cui | Oct 2019 | A1 |
20200277169 | Zhan | Sep 2020 | A1 |
20200299116 | Fan | Sep 2020 | A1 |
20220009756 | Fan et al. | Jan 2022 | A1 |
Number | Date | Country |
---|---|---|
203728468 | Feb 2014 | CN |
104925691 | Sep 2015 | CN |
206188291 | May 2017 | CN |
206188292 | May 2017 | CN |
206606959 | Nov 2017 | CN |
207361653 | May 2018 | CN |
207537039 | Jun 2018 | CN |
208037900 | Nov 2018 | CN |
208532082 | Feb 2019 | CN |
210286571 | Apr 2020 | CN |
10300960 | Jul 2004 | DE |
2018110886 | Jun 2018 | WO |
Entry |
---|
U.S. Office Action mailed Nov. 18, 2019 for U.S. Appl. No. 16/510,775, filed Jul. 12, 2019. (9 pages). |
U.S. Office Action mailed Dec. 20, 2019 for U.S. Appl. No. 16/655,149, filed Oct. 16, 2019. (11 pages). |
International Search Report of the International Searching Authority for PCT International Application No. PCT/CN2019/077842 mailed Oct. 12, 2019. (English Translation, p. 1-20). |
U.S. Appl. No. 16/742,632 Notice of Allowance Mailed Jun. 29, 2021, pp. 1-7. |
U.S. Appl. No. 16/737,667, Restriction Requirement Mailed Mar. 21, 2022, pp. 1-6. |
U.S. Appl. No. 18/335,980 Non-Final Office Action Mailed Jan. 23, 2024, pp. 1-11. |
U.S. Appl. No. 18/335,993, Non-Final Office Action Mailed Jan. 30, 2024, pp. 1-11. |
U.S. Appl. No. 17/484,950, Non-Final Office Action mailed Feb. 21, 2024, pp. 1-12. |
Chinese Application No. 201910149808.9 Office Action Mailed Dec. 1, 2023, with English Translation, pp. 1-18. |
Chinese Application No. 201910149845.X, Office Action mailed Jan. 2, 2024, with English Translation, pp. 1-10. |
Number | Date | Country | |
---|---|---|---|
20230322531 A1 | Oct 2023 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16737667 | Jan 2020 | US |
Child | 18335993 | US |