The present disclosure is directed to the field of lifters, hoists and winches.
Lifters, hoists and winches are used extensively to lift, lower, or pull loads of various kinds. Such devices typically include a line, such as a cable or chain, wrapped around a spool. To lift, lower, or pull a load, the spool may be manually rotated or driven with a motor, such as an electrical, hydraulic, or pneumatic motor. When rotation is not desired, a braking mechanism may be used to prevent the spool from turning. This may maintain tension in the line, keep a load suspended, or prevent the release or unspooling of the line. To keep the line from bunching on the spool, some hoists or winches may include guides or other mechanisms to evenly wind the line around the spool.
Although a wide variety of lifters, hoists and winches are available, many have shortcomings that prevent or discourage their use in various applications. For example, some hoists or winches are bulky or cumbersome, which may prevent their use in applications where greater compactness is required or desired. Other hoists and winches may be economically infeasible for use in applications such as consumer or residential applications due to their complexity or expense.
Maintaining a flexible line in an orderly way and preventing excessive slack, bunching, and misalignment ensures proper winch operation. Without proper spacing, tension, and alignment the flexible line can become jammed or wear unevenly leading to material degradation or even failure. There is a need in the art for a winch that can maintain a flexible line in an efficient way to ensure a long effective life of the device.
Embodiments of the present disclosure are directed to a winch including a spool having an axis of rotation and a cylindrical outer surface with a helical groove formed therein and a line attached to the spool and configured to be wound around the spool in the helical groove. The winch also includes a motor configured to rotate the spool in a first direction to wind the line onto the spool in the helical groove and a second direction to unwind the line off of the spool. The helical groove includes a line cradle shaped to carry the line with at least a portion of the line protruding out of the helical groove, and a channel in the helical groove extending below the line cradle. When the line is in the line cradle at least a portion of the channel is not occupied by the line. The winch also includes a line guide adjacent to the spool and configured to move axially along the spool to facilitate winding and unwinding the line onto the spool in the helical groove and off of the spool, the line guide comprising a tab that engages the channel to thereby cause the line guide to move axially along the spool to facilitate winding or unwinding the line, depending on the direction the spool is rotated.
Other embodiments of the present disclosure are directed to a winch including a motor, and a spool having a generally cylindrical body with a helical groove formed in an external surface of the spool that is rotatable by the motor. The winch also includes a line in the helical groove and being configured to wind onto and off of the spool in the helical groove when the motor rotates the spool. The winch also includes a line guide encircling the spool and having a slot through which the line passes as the line is wound onto and off of the spool. The line guide is configured to move axially along the spool as the line is wound onto and off of the spool.
Still other embodiments of the present disclosure are directed to a winch including a spool having a helical path formed therein and configured to receive a line wound around the spool in the helical path, the spool being rotatable by a motor to wind and unwind the line from the spool. The winch also includes a line guide with a main body having a generally cylindrical shape encircling the spool, a ridged head protruding inwardly from the main body, and a slot receiving the line to guide the line relative to the helical path as the line is wound onto and off of the spool. The helical path includes a line cradle having a generally rounded profile adapted to receive the line, and a channel extending below the line cradle, wherein the ridged head of the line guide is positioned in the channel, and whereby the channel causes the line guide to move axially along the spool as the spool rotates.
Further aspects and embodiments are provided in the foregoing drawings, detailed description and claims.
The following drawings are provided to illustrate certain embodiments described herein. The drawings are merely illustrative and are not intended to limit the scope of claimed inventions and are not intended to show every potential feature or embodiment of the claimed inventions. The drawings are not necessarily drawn to scale; in some instances, certain elements of the drawing may be enlarged with respect to other elements of the drawing for purposes of illustration.
The following description recites various aspects and embodiments of the inventions disclosed herein. No particular embodiment is intended to define the scope of the invention. Rather, the embodiments provide non-limiting examples of various compositions, and methods that are included within the scope of the claimed inventions. The description is to be read from the perspective of one of ordinary skill in the art. Therefore, information that is well known to the ordinarily skilled artisan is not necessarily included.
The following terms and phrases have the meanings indicated below, unless otherwise provided herein. This disclosure may employ other terms and phrases not expressly defined herein. Such other terms and phrases shall have the meanings that they would possess within the context of this disclosure to those of ordinary skill in the art. In some instances, a term or phrase may be defined in the singular or plural. In such instances, it is understood that any term in the singular may include its plural counterpart and vice versa, unless expressly indicated to the contrary.
As used herein, the singular forms “a,” “an,” and “the” include plural referents unless the context clearly dictates otherwise. For example, reference to “a substituent” encompasses a single substituent as well as two or more substituents, and the like.
As used herein, “for example,” “for instance,” “such as,” or “including” are meant to introduce examples that further clarify more general subject matter. Unless otherwise expressly indicated, such examples are provided only as an aid for understanding embodiments illustrated in the present disclosure and are not meant to be limiting in any fashion. Nor do these phrases indicate any kind of preference for the disclosed embodiment.
As used herein, “winch” refers to lifting or pulling device consisting of a line winding around a horizontal rotating drum, turned by a crank or by motor or other power source.
As used herein, “winch,” “hoist,” “lift,” “winching device,” “hoisting device,” and “lifting device” are meant to refer to an apparatus that can be actuated to selectively raise and lower an object. These terms are generally interchangeable except for where specifically noted herein.
“Spool” is meant to refer to a generally cylindrical member that rotates to wind a line thereon.
“Line” is meant to refer to a cable, cord, wire, or other suitable interchangeable generally elongated, flexible, member that winds onto the spool.
The line guide 108 also includes a protrusion 152 having a tab 154 that engages the channel 142 between coils of the groove 140, and shoulders 156 that engage the line cradle 144. A line 148 is shown in the groove 140 between the line guide 108 and the spool 104. The protrusion 152 can be ahead or behind the line 148 as the line winds onto and off of the spool 104. Accordingly, the line guide 108 follows the line 148 along the spool 104 as the line 148 winds around the spool 104. In some embodiments the tab 154 and guide trough are omitted in favor of using the concave portion 144 and shoulders 152. The line guide 108 also includes a key 158 on an outer diameter of the line guide 108 to ensure the line guide 108 does not rotate around the spool 104 but rather moves axially as the spool rotates.
It is noted that, although much of the discussion above has involved lifting objects with the winches described, the disclosed winches can also be used for pulling objects. The tensioning wheel, that assures that the line is pulled off the spool as it is being unwound, is particularly advantageous to these pulling embodiments, that do not have gravity to assist pulling the line off the spool.
The tensioning wheel of the present disclosure contacts an exposed surface of the line as it winds onto the spool and moves at a speed based on the rotational speed of the spool. The radius is measured from the center of rotation of the spool, to the exposed surface of the line. This speed is referred to herein as the “line speed” or “linear speed of the line.” The speed may also be referred to as the tangential speed. The tensioning wheel has a contact surface that contacts the line. The tensioning wheel rotates at a certain rotational rate which can be manipulated as needed. The speed of the contact surface of the tensioning wheel is referred to herein as the “tensioning wheel speed.”
The gears of the winch and the tensioning wheel itself are constructed such that the tensioning wheel speed is between 1% and 50% faster than the line speed. The dimensions of the spool, line, and tensioning wheel may vary. Accordingly, the tensioning wheel frictionally slips along the line slightly to ensure there is tension on the line as it pays out. That is, the wheel drags along the line using the friction between the two to create the tension. If the speeds were identical there would be no frictional slip and the movement would be one-to-one. With a speed differential the wheel “slips” or “drags” along the line, thereby creating the desired tension. As the line is wound onto the spool, the one-way bearing allows the tensioning wheel to spin freely, whether or not it contacts the line.
All patents and published patent applications referred to herein are incorporated herein by reference. The invention has been described with reference to various specific and preferred embodiments and techniques. Nevertheless, it is understood that many variations and modifications may be made while remaining within the spirit and scope of the invention.
This application claims priority to U.S. Provisional Patent Application No. 63/284,356 entitled “Winch with Helical Groove and Line Guide,” filed on Nov. 30, 2021. This application also claims priority to U.S. Provisional Patent Application No. 63/373,327, entitled “Winch with Supporting Tie Rod,” filed on Aug. 23, 2022. This application also claims priority to U.S. Provisional Patent Application No. 63/373,324, entitled “Raisable Grow System,” filed on Aug. 23, 2022. The entire disclosures of these three prior applications are incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
63284356 | Nov 2021 | US | |
63373327 | Aug 2022 | US | |
63373324 | Aug 2022 | US |