The disclosure relates to forecasting wind velocities and in particular to using laser Doppler velocimeters to forecast wind velocities for wind turbine power output management and effective integration into the electrical grid of wind-generated power.
Wind turbines harness the energy of the wind to rotate turbine blades. The blade rotation is used to generate electric power. The generated power is accessible by consumers via a power grid, generally controlled by a utility company. However, because wind velocities constantly change, using a wind turbine or multiple wind turbines in a wind farm to generate a constant power supply for the power grid requires adapting the operation of the wind turbine to the changing conditions of the wind. When an entire wind farm of turbines is used to generate power for the power grid, each turbine must be adaptively controlled in order to respond to the changing wind conditions.
Currently, wind turbines are adaptively controlled and wind farm power output is predicted based on daily or other relatively long-term weather forecasts. Such forecasts estimate future wind velocities based on predictive models involving isobars or pressure gradients. However, these forecasts lack the accuracy and timeliness required to account for minute-by-minute or even hourly local or regional fluctuations in wind velocity which are critical in wind energy production. Wind turbines may also be adaptively controlled based on wind conditions measured at a meteorlogical station or tower. However, such stations are expensive and only measure wind conditions at the location of the station. Thus, such stations do not provide enough information to effectively control an array of wind turbines at a wind farm which is located remotely from the meteorlogical station. Specifically, the sparse placement of meteorlogical stations fails to provide sufficient information to effectively map and predict wind conditions as they approach a wind farm.
One of the most significant costs associated with harnessing wind power results from these inaccurate forecasts of wind generation. Because the electrical grid requires that electrical generation and consumption remain in balance in order to maintain stability, the unpredicted short-term variability of wind velocities can present substantial challenges to incorporating large amounts of wind power into the electrical grid system. Changes and interruptions in the amount of electricity produced through wind power result in increased costs for regulating the electrical supply and maintaining adequate incremental operating reserves. For example, when wind-generated electricity levels are higher than anticipated, an accompanying increase in energy demand management efforts must occur, including load shedding or storage solutions. Alternatively, when wind-generated electricity levels are lower than anticipated, a sufficient reserve capacity must be maintained that can be quickly brought on-line for those instances. Wind power can be replaced by other power stations during low wind periods, however this increases costs and requires that systems with large wind capacity components include more spinning reserve (plants operating at less than full load). Moreover, the above-described short-comings of the current wind velocity measurement techniques do not allow wind farms to accurately forecast power output levels until it is too late. As a result, replacing power that was expected to be generated by a wind farm with these other sources becomes much more expensive and a potential road-block to increasing the percentage of renewable energy integration.
Additionally, failure to adequately adjust direction and/or orientation of wind turbines in response to short-term variations in wind velocity can result in substantial stresses being applied to the turbines themselves. Sudden increases or decreases in load can damage or significantly reduce the expected lifespan or load capacity of a turbine. The resulting repair and maintenance costs and associated down-time are very detrimental to wind farm profitability and viability.
As a result of these concerns, many wind farms are operated at 30% or more below operating capacity, thus reducing the total amount of fluctuating power that must be compensated for should wind conditions change unexpectedly. For all of these reasons, there exists a desire and need to accurately forecast wind conditions at a wind farm well in advance of the wind actually reaching the wind farm so as to provide enough time to adaptively regulate the wind turbines to optimize electric power generation, minimize maintenance and repair costs, and also to enable the wind farms to notify electrical utilities in advance of any expected power output changes. Measured wind data from a number of sites can be networked together into a regional or larger real time wind picture. Such a data base supports larger scale power management decisions and reduces risk and uncertainty in maintaining grid capacity and stability under variable loads.
A laser Doppler velocimeter (“LDV”) may be used to determine wind speeds at target regions remote from the velocimeter. The LDV uses LIDAR technology. LIDAR, which stands for “light detection and ranging,” is an optical remote sensing technology that measures properties of scattered light to find range and other information of a distant target. For example, an LDV may be used to transmit light to a target region in the atmosphere. Objects at the target region such as aerosols or air molecules act to scatter and reflect the transmitted light. The LDV then receives the reflected light from the target region. This received light is processed by the LDV to obtain the Doppler frequency shift, fD. The LDV then conveys the velocity of the target relative to the LDV, v, by the relationship v=(0.5)cfD/ft where ft is the frequency of the transmitted light, and c is the speed of light.
Through the use of LIDAR technology, wind conditions may be accurately measured using an LDV that is remote from the target region. For wind turbines, this means that a single LDV could be used to measure wind conditions at multiple locations, including at locations far away from the wind turbine. By using range-gating techniques, an LDV could make measurements at locations far from the wind turbine as well as at intermediate distances, thus providing a means to track the approach of a wind front as it passes over the surrounding terrain. Multiple LDVs could be used, thus increasing the range of measured locations and the resolution of collected data within the measured area.
Target regions are selected such that wind velocity measurements at those regions will allow for sufficient time to adapt the wind turbines at the wind farm to account for any changes in wind velocity. Additional target regions may be selected that provide additional time for balancing load on an electric grid associated with the wind farm, thereby allowing the powering-up or down of additional power sources in order to compensate for changes in power generated by the wind farm. Through using a network of LIDAR devices, operators of wind farms will gain anywhere from hundreds of seconds to ten or more minutes of advance notice regarding incoming wind velocities.
Therefore, the invention provides a system and method for measuring wind conditions at ranges of several kilometers in any direction from a wind farm. With the resultant lead-time, a wind farm operator and an associated area power coordinator can manage variability, storage, and on- or off-line reserve power sources to maintain balance with load. The wind farm operator is also able to use the collected wind condition data to take actions to prevent wind overloads from overstressing the wind turbine structures or prematurely fatiguing expensive components such as blades and drive train. The profitability of wind energy depends strongly on minimizing repair and maintenance down-time and costs. Given the complex bidding and penalty structure of the power market, advance knowledge of the wind and, therefore, potential power data becomes very valuable to the operator.
In an embodiment of the disclosure, the invention includes one or more LIDAR-based sensors designed to provide data on remote wind direction and magnitude from virtually any location. The sensor is capable of accuracy of better than 1 m/s of wind speed and 1 degree of wind direction regardless of range. The maximum range of the sensor could vary according to needs by simply adjusting several design parameters such as laser power, pulse characteristics, data update rates and aperture size.
An example of a preferred LIDAR-based sensor is disclosed in U.S. Pat. No. 5,272,513, which is incorporated by reference herein. Another example of a preferred LIDAR-based sensor is disclosed in International Application No. PCT/US2008/005515, also incorporated by reference herein. The disclosed LDV is fully eye-safe and uses all fiber-technology. The LDV may be directed in a single direction, or could have multiple transceivers directed in multiple directions. Alternatively, the LDV could include means to rotate the transceivers so that measurements may be made in any direction. Mirrors could also be used to direct transmissions from a stationary transceiver in any direction.
While near field measurements may be useful, the LDV is also capable of determining wind conditions at distances of one or more kilometers. The LDV sensors may be located on wind turbines at a wind farm, or on other stationary objects at or near the wind farm. Additionally, remotely-located LDV sensors may also be used to produce a more expansive map of wind conditions. By using both local and remote LIDAR sensors, a combination of micro and macro-scaled wind mappings may be generated.
If desired, additional measurements may be made that are even more distant from the wind farm 100. Conceivably, these measurements could be made by a very long range LDV. Or, alternatively, and as illustrated in
The resulting measurements may be illustrated on a wind vector map 200, as illustrated in
As additional LDVs are established and additional measurements are made, the wind vector map could be enlarged in both scope and resolution.
The wind vector maps 200, 300 and the measured wind conditions are used in order to make necessary adjustments at both the wind farm and in the regional power grid. For example,
With advance notice of tens of seconds, turbines can be adjusted in order to maintain stable wind loads. By maintaining constant loads within specified operating parameters, wind farm operators can minimize the wear and stress on their turbines. Turbines are adjusted not only to harness the wind but also to avoid sudden changes in load that often result in turbine damage. An advance notice of tens of seconds is also enough time for a wind farm operator to interface with the connecting power grid to give a warning that a power output change is imminent.
Advance notice of tens of seconds to hundreds of seconds is necessary in order to bring spinning reserves on- or off-line. It is also enough time to effectively control the wind farm output so that the output is as stable as possible. With hundreds of seconds of advance notice, area operators are able to adjust the local power grid in order to absorb the changing output from the wind farm.
With 500 or more seconds of advance notice, other power sources including non-spinning power reserves are able to be brought online. And with even more advance notice, as provided by the regional wind vector map 300, for example, the LIDAR wind mapping may be used to update weather forecasts and influence bidding and pricing of the electrical grid markets.
A simplified illustration of the disclosed feedback system is illustrated in
Therefore, by using LIDAR to solve the wind intermittency problem, many problems are eliminated. Remote wind measurement at various ranges can provide real time conditions from 10 to 500+ seconds before the conditions arrive at the wind farm. This allows for wind mapping and change tracking. It also allows for very accurate power variation projections. It allows for reaction times sufficient for grid balancing, maintaining stability, power bidding, power ramping, application of reserves or other farm and grid management actions. Thus, the reliable wind data leads to lower costs, higher turbine utilization, and more reliable grid operation.
Number | Date | Country | |
---|---|---|---|
Parent | 13057120 | May 2011 | US |
Child | 13620577 | US |