The subject matter described below relates generally to an air baffle for an air-conditioning system. More particularly, the described subject matter relates to an air baffle that includes multiple, variable air vents on different surfaces to allow a user to vary a direction of input air to inlet vents for an air-conditioning system.
An outdoor unit in an air-conditioning system operates to draw outdoor air into the outdoor unit, exchange heat between a refrigerant coil and the outdoor air, and then eject the heated or cooled outdoor air back outside of the outdoor unit. When the air-conditioning system is operating in a heating mode, the refrigerant coil in the outdoor unit is at a temperature below that of the outdoor air and operates to draw heat from the outdoor air to heat the refrigerant in the refrigerant coil. When the air-conditioning system is operating in a cooling mode, the refrigerant coil in the outdoor unit is at a temperature above that of the outdoor air and operates to dissipate heat to the outdoor air to cool the refrigerant in the refrigerant coil.
When an air conditioning system using a heat exchanger (e.g., a heat pump) is operating in a cooling mode and the outdoor temperature is extremely low and windy, expelling too much heat to the outdoors could create operating issues with the air conditioning system. In such a situation, the pressure of refrigerant in the refrigerant coil can decrease to an undesirable degree causing operating problems.
Furthermore, air-conditioners that employ heat exchangers become less efficient in a heating operation at low temperatures. Conventionally, heat pumps have been considered to become increasingly inefficient when operating at outside temperatures below freezing (e.g., below about −5° C./23° F.). A major reason for this is that heat pumps operate by drawing heat out of the ambient outdoor air and there are rapidly decreasing amounts of heat in outdoor air as the outdoor temperatures falls below freezing.
In heat exchangers that rely on outdoor air for heat, wind blowing against surface of the refrigerant coil can exacerbate the negative affect that a drop in ambient air temperature below 23° F. (−5° C.) has on system stability and capacity.
Attempts to combat the negative effects of low ambient air temperature and wind have included installing wind guards that restrict airflow to the refrigerant coils of the outdoor unit to allow for more efficient operation at a lower outdoor operating temperature. For example, when an air-conditioner is operating in a cooling mode and it is cold outside, wind guards can modulate, block, or limit the amount of wind that would otherwise increase the amount of heat rejected to the outdoors.
Current wind guards are fixed, one-size-fits-all devices that only provide a single configuration. While they do offer some protection from the wind, they offer no flexibility. Once installed they offer the same wind protection regardless of the prevailing conditions. And if a wind guard is to be used, the same device, which is not optimized for any given device, must serve for multiple outdoor units in different areas with differing amounts, directions, and speeds of wind. As a result, existing wind guards will typically not be as efficient as they could in maximizing the exchange of heat between the refrigerant coil in the outdoor unit and the outdoor air.
It would therefore be desirable to provide a variable wind baffle that can be altered as needed for a variety of installation circumstances.
A wind baffle is provided that is operable to control movement of air to an air inlet of an air-conditioner, the wind baffle comprising: a frame defining an inlet side, an outdoor side opposite the inlet side, and a plurality of wall sections between the inlet side and the outdoor side; a back plate formed on the outdoor side such that air cannot pass through the outdoor side; a first variable air vent formed on a first of the plurality of wall sections, the first variable air vent being configured to selectively pass or restrict a first air flow though the first variable air vent; a second variable air vent formed on a second of the plurality of wall sections different from the first of the plurality of wall sections, the second variable air vent being configured to selectively pass or restrict a second air flow though the second variable air vent; and a securing mechanism on the inlet side configured to attach the wind baffle to the air inlet such that the inlet side directly faces the air inlet, wherein the inlet side is unobstructed, allowing air to pass freely.
The first variable air vent may include a variable block-off plate configured to take one of a plurality of configurations, each of the plurality of configurations allowing a different amount of air to flow through the first variable air vent.
The variable block-off plate may further comprise: a positioner configured to allow the variable block-off plate to move between the plurality of configurations; and a fastener to secure the variable block-off plate in one of the plurality of configurations.
The positioner may be one of a linear opening in the variable block-off plate, a bolt hole, and a protrusion configured to rest in a corresponding indentation.
The first variable air vent may include an array of louvers configured to take one of a plurality of configurations, each of the plurality of configurations representing a differing degree of opening and allowing a different amount of air to flow through the array of louvers.
The first variable air vent may further comprise: an opening configured to allow passage of air; and a plurality of slats formed to cover the opening, and the plurality of slats are configured such that one or more of the plurality of slats can be removed from the first variable air vent to increase air flow through the first air vent.
The plurality of slats may be configured such that the plurality of slats can be removed from the first variable air vent and can be replaced on the first variable air vent after removal.
The plurality of slats may be configured such that removal of one of the plurality of slats from the first variable air vent cannot be reversed.
The wind baffle may further comprise: a baffle control circuit configured to automatically control at least one of the first and second variable air vents.
The baffle control circuit may include a wind direction sensor configured to detect a wind direction around the wind baffle, and the baffle control circuit may be configured to automatically control at least one of the first and second variable air vents based on the detected wind direction around the wind baffle.
The baffle control circuit may operate in response to baffle control signals received from an air-conditioner controller.
An air-conditioning system is provided, comprising: an outdoor air-conditioner having two or more air inlets for drawing in air, the two or more air inlets each being formed on different sides of the outdoor air-conditioner; a first wind baffle secured to a first air inlet selected from the two or more air inlets such that the first wind baffle completely covers the first air inlet, wherein the first wind baffle further comprises a first frame defining a first inlet side, a first outdoor side opposite the first inlet side, and a first plurality of wall sections between the first inlet side and the first outdoor side; a first back plate formed on the first outdoor side such that air cannot pass through the first outdoor side; a first variable air vent formed on a first of the plurality of first wall sections, the first variable air vent being configured to selectively pass or restrict a first air flow though the first variable air vent; a second variable air vent formed on a second of the first plurality of wall sections different from the first of the plurality of wall sections, the second variable air vent being configured to selectively pass or restrict a second air flow though the second variable air vent; and a first securing mechanism on the first inlet side configured to attach the first wind baffle to the first air inlet such that the first inlet side directly faces the first air inlet, wherein the first inlet side is unobstructed, allowing air to pass freely.
The first variable air vent may include a variable block-off plate configured to take one of a plurality of configurations, each of the plurality of configurations allowing a different amount of air to flow through the first variable air vent.
The variable block-off plate may further comprise: a positioner configured to allow the variable block-off plate to move between the plurality of configurations; and a fastener to secure the variable block-off plate in one of the plurality of configurations.
The positioner may be one of a linear opening in the variable block-off plate, a bolt hole, and a protrusion configured to rest in a corresponding indentation.
The first variable air vent may include an array of louvers configured to take one of a plurality of configurations, each of the plurality of configurations representing a differing degree of opening and allowing a different amount of air to flow through the array of louvers.
The first variable air vent may further comprise: an opening configured to allow passage of air; and a plurality of slats formed to cover the opening, wherein plurality of slats may be configured such that one or more of the plurality of slats can be removed from the first variable air vent to increase air flow through the first air vent.
The plurality of slats may be configured such that the plurality of slats can be removed from the first variable air vent and can be replaced on the first variable air vent after removal.
The plurality of slats may be configured such that removal of one of the plurality of slats from the first variable air vent cannot be reversed.
The air-conditioning system may further comprise: a baffle control circuit configured to automatically control operation of the first variable air vent.
The baffle control circuit may include a wind direction sensor configured to detect a wind direction around the first wind baffle, and the baffle control circuit may be configured to automatically control at first air vent based on the detected wind direction around the first wind baffle.
The air-conditioning system may further comprise an air-conditioner controller configured to control operation of the air-conditioning system, wherein the baffle control circuit operates in response to baffle control signals received from the air-conditioner controller.
The air-conditioning system may further comprise a second wind baffle secured to a second air inlet selected from the two or more air inlets such that the second wind baffle completely covers the second air inlet, wherein the second wind baffle further comprises: a second frame defining a second inlet side, a second outdoor side opposite the second inlet side, and a second plurality of wall sections between the second inlet side and the second outdoor side; a second back plate formed on the second outdoor side such that air cannot pass through the second outdoor side; a third variable air vent formed on a first of the plurality of second wall sections, the third variable air vent being configured to selectively pass or restrict a third air flow though the third variable air vent; a fourth variable air vent formed on a second of the second plurality of wall sections different from the first of the second plurality of wall sections, the fourth variable air vent being configured to selectively pass or restrict a second air flow though the fourth variable air vent; and a second securing mechanism on the second inlet side configured to attach the second wind baffle to the second air inlet such that the second inlet side directly faces the second air inlet, and the second inlet side is unobstructed, allowing air to pass freely.
The air-conditioning system may further comprise a second wind baffle secured to a second air inlet selected from the two or more air inlets such that the second wind baffle completely covers the second air inlet, wherein the second wind baffle entirely prevents air flow through the second air inlet.
The accompanying figures where like reference numerals refer to identical or functionally similar elements and which together with the detailed description below are incorporated in and form part of the specification, serve to further illustrate an exemplary embodiment and to explain various principles and advantages in accordance with the present disclosure.
The instant disclosure is provided to further explain in an enabling fashion the best modes of performing one or more embodiments of the present invention. The disclosure is further offered to enhance an understanding and appreciation for the inventive principles and advantages thereof, rather than to limit in any manner the invention. The invention is defined solely by the appended claims including any amendments made during the pendency of this application and all equivalents of those claims as issued.
It is further understood that the use of relational terms such as first and second, and the like, if any, are used solely to distinguish one from another entity, item, or action without necessarily requiring or implying any actual such relationship or order between such entities, items or actions. It is noted that some embodiments may include a plurality of processes or steps, which can be performed in any order, unless expressly and necessarily limited to a particular order; i.e., processes or steps that are not so limited may be performed in any order.
Wind Baffle Using Variable Block-Off Plates
The frame 110 is a structure that supports the remaining elements of the wind baffle 100. It defines a hollow area between the back plate 120, the plurality of openings 170, the one or more stationary walls 180, and the vent opening 190. In the disclosed embodiment, the frame 110 can be a series of connected struts that either include each element or provide a structure for the elements to be connected.
The back plate 120 is a solid wall structure connected to the frame 110 and formed opposite the vent opening 190. The back plate 120 operates to block wind from passing in the direction it covers.
Although the back plate 120 is shown as being a flat surface, this is by way of example only. In alternate embodiments, the back plate 120 could have a different shape. For example, it could be curved, dome-like, etc., So long as it blocks air from passing through.
The one or more securing mechanisms 130 are formed on the frame 110 and are arranged such that they can secure the frame 110 to an outdoor air-conditioning unit adjacent to an air intake on the outdoor air-conditioning unit. In the embodiment of
The plurality of variable air vents 140 are formed on at least two sides of the wind baffle 100 and can be arranged in a plurality of positions that each allow a different amount of air to pass through. These positions include a fully-closed position in which a variable air vent 140 completely obscures a corresponding opening 170 and at least one open position in which the variable air vent 140 leaves at least a portion of the corresponding opening 170 open and able to pass air.
In some embodiments the variable air vents 140 will have multiple possible open positions including a fully-open position in which the variable air vent 140 leaves the entirety of the corresponding opening open, and one or more partially-open positions in which the variable air vent 140 leaves a fraction of the corresponding opening 170 open.
In the embodiment of
In the embodiment of
The plurality of positioners 150 in the embodiment of
The plurality of fasteners 160 are bolts that slide through a corresponding positioner 150 and into a hole (not shown) in the frame 110 and are secured by a corresponding nut.
The plurality of openings 170 are empty spaces in the frame 110 that can be covered over, in whole or in part, by the corresponding variable air vents 140. When at least a portion of an opening 170 is left unobscured by a corresponding variable air vent 140, air can pass from outside the wind baffle 100 into the hollow portion of the wind baffle 100 through the opening 170. The amount of air that can pass into the hollow portion, and the speed at which the air will pass into the hollow portion will depend upon how much of the opening 170 is left unobscured by the corresponding variable air vent 140.
The one or more stationary walls 180 are structures on one or more sides of the frame 110 that operate to prevent wind from entering into the hollow space between the back plate 120 and the vent opening 190 in the direction it covers.
The vent opening 190 is an empty space in the frame 110 opposite the back plate 120. The wind baffle 100 is configured such that air in the hollow portion of the wind baffle 100 can freely pass through the vent opening 190.
In operation, the frame 110 can be secured to an outdoor air-conditioning unit such that the one or more securing mechanisms 130 are connected to corresponding connection portions on an outdoor air-conditioning unit. In such an arrangement, the vent opening 190 will be formed adjacent to an air intake of the outdoor air-conditioning unit. In this way, air that flows into the hollow portion of the wind baffle 100 can freely pass into the air intake of the outdoor air-conditioning unit through the vent opening 190.
Once the frame 110 is secured to the outdoor air-conditioning unit, the back plate 120 will prevent air from blowing directly onto the air intake of the outdoor air-conditioning unit. Similarly, each of the one or more stationary walls 180 will prevent air from passing into the hollow area portion of the wind baffle 100 in a corresponding direction.
Each of the variable air vents 140 of
An operator can arrange each of the plurality of variable air vents 140 on the wind baffle 100 such that they allow a desired amount of air in through the corresponding opening 170. In this way, the particular configuration of the wind baffle 100 can be altered before or after installation to account for the prevailing wind conditions around the outdoor air-conditioning unit. Each configuration can allow different amounts of wind to enter the hollow portion of the wind baffle 100 from different directions. The same wind baffle design can thus be used for outdoor air-conditioning units in different conditions (e.g., different prevailing wind directions and intensities). By properly configuring the variable air vents 140, each individual wind baffle 100 can optimize the incoming air to avoid excess wind blowing on the air intake of the outdoor air-conditioning unit.
Although
In some embodiments the wind baffle 100 can be configured such that it can only be secured to an outdoor air-conditioning unit in one orientation. However, alternate embodiments can provide a wind baffle 100 that can be secured to an outdoor air-conditioning unit in multiple orientations. For example, a wind baffle 100 could be provided with variable air vents 140 on two adjacent sides, and stationary walls 180 on two other adjacent sides. The wind baffle 100 could then be configured such that it could be connected to the outdoor air-conditioning unit in two different configurations. The first configuration could be with variable air vents 140 facing up and to the left and stationary walls 180 facing down and to the right. The second configuration could involve rotating the wind baffle 100 180° such that the variable air vents 140 faced down into the right and the stationary walls 180 faced up and to the left. This design would allow a greater variety of configurations for the wind baffle 100, while simplifying its design. Other embodiments could provide for other possible orientations for the wind baffle 100.
As shown in
Although in the disclosed embodiment of
In various embodiments the frame 110, the back plate 120, the plurality of variable air vents 140, and the one or more stationary walls 180 may be made of metal, plastic, or any other suitable material.
Although
One embodiment could replace the block-off plates with a set of louvers that obscure a corresponding opening 170. These louvers would include a plurality of parallel slots that could be rotated between a fully closed position and a fully open position, with one or more partially open positions potentially in between the fully open position and the fully closed position. The amount of air that could pass through the opening 170 will vary depending upon the degree to which the louvers were open or closed.
Another embodiment could replace the block-off plates with one or more removable strips that obscure the opening 170. If none of the removable strips were removed, the variable air vent 140 would prevent any air from passing through in that direction. If all of the removable strips were removed, the variable air vent 140 would freely allow air to pass through a corresponding opening 170. If fewer than all of the strips were removed, the variable air vent 140 would partially restrict air passing through the opening 170.
In various embodiments, these strips could be permanently removable or removed in such a manner that they could be replaced. For example, in one embodiment the strips in each variable air vent 140 could be configured such that a user could use a tool to permanently break a strip out of the variable air vent 140 (e.g., during installation). Each strip could be connected to the frame 110 by a thin strip of plastic or metal that could easily be cut or otherwise broken. Once removed, each strip would be permanently removed and could not be replaced. In another embodiment, each strip could be secured by a securing mechanism (e.g., a plurality of nuts and bolts, screws, clamps, etc.) that would allow them to be removed and then later replaced. In this way, the wind baffle 100 could be reconfigured at different times such that each variable air vent 140 could potentially pass a different amount of air.
Air-Conditioning System Using Variable Wind Baffles
The outdoor unit 210 is an outdoor air-conditioning unit that draws outdoor air in through the air inlets 220, passes the outdoor air over a refrigerant coil, exchanges heat between the outdoor air and the refrigerant coil, and then ejects the outdoor air through an air outlet (not shown).
Each wind baffle 100 is secured to the outdoor unit 210 by one or more securing mechanisms 130 (not shown in
As shown in
Two walls of each wind baffle 100 are shown in the embodiment of
In the embodiment of
One reason for configuring the variable air vents 140 differently on the wind baffles 100 connected to each air inlet 220 is to arrange the wind baffles 100 such that they minimize the amount of wind that blows onto the air inlets 220 during cold weather, since high winds blowing on air inlets 220 during cold weather can reduce the efficiency of the outdoor unit 210.
The particular configurations of the variable air vents 140 on the bottom and right wind baffles 100 can be set based on knowledge of the prevailing winds surrounding the outdoor unit 210. Information on the prevailing winds can come from wind sensors, weather reports, or any other suitable information source.
In the embodiment of
In the embodiment of
In the embodiment of
In the embodiment of
In the embodiment of
In the embodiment of
In the embodiment of
In the embodiment of
These eight disclosed embodiments are by way of example only. The prevailing winds could come from any direction, and the variable air vents 140 in the various wind baffles 100 could be arranged in different configurations. For example,
As noted above, different embodiments can employ different configurations for the variable air vents 140.
As shown in
Each wind baffle 410 includes a back plate 120, two or more louvers serving as variable air vents 440, two or more openings 470 covered by the variable air vents 440, and a vent opening 190. Although not shown in
The outdoor unit 210 and its two air inlets 220 operate as described above with respect to
The two or more variable air vents 440 are louvers that are arranged covering comparable openings 470 and are configured such that each variable air vent 440 contains a plurality of slats attached in parallel at regular intervals in the associated opening 470. The plurality of slats can be each be swiveled along a corresponding axis such that they can be arranged to be parallel to the plane of the opening 470, perpendicular to the plane of the opening 470, or an angle between parallel and perpendicular to the plane of the opening 470.
The openings 470 are comparable to the openings 170 in the wind baffle 100 of
When the slats in a variable air vent 440 are parallel to the plane of an associated opening 470, they completely close the opening 470 preventing any air from passing through the opening 470. When the slats are perpendicular to the plane of the opening 470, air freely flows through the opening 470. When the slats are at an angle between parallel and perpendicular to the plane of the opening 470, air can pass through the opening 470, but is restricted based on the degree to which the slats are opened. By controlling the angle of the slats in each louver 440, a user can control the amount of air that passes through a given opening 470.
The embodiment of
The back plate 120 and the vent opening 190 operate as described above with respect to
The frame 510 is a structure that supports the remaining elements of the wind baffle 500. It defines a hollow area between the back plate 120, the variable air vents 540, and the vent opening 190. In the disclosed embodiment, the frame can be a series of connected struts that either include each element or provide a structure for the elements to be connected
The plurality of variable air vents 540 are formed on at least two sides of the wind baffle 500. The specific embodiment of
The variable air vents 540 are arranged as a plurality of slats that cover openings 570 on the sides of the wind baffle 500. In the embodiment of
No openings 570 are shown in
In some embodiments, the slats in the variable air vents 540 are configured such that they can be removed and later replaced. For example, each slat could snap into place, or could be secured by screws or nuts and bolts. In other embodiments, the slats in the variable air vents 540 are configured such that once they are removed, they cannot be replaced. For example, each slat could be connected to the frame 540 by a thin piece of metal or plastic. An operator could remove a given slat by breaking the thin piece of metal or plastic freeing the slat. However, once the thin piece of metal or plastic was broken, it could not be repaired. Such variable air vents 540 could be configured once, but would have to retain that configuration evermore.
The variable air vents 540 will have multiple possible open positions based on how many of the slats are removed. In this embodiment, a fully-open position of the variable air vent 540 corresponds to a configuration in which all of the slats covering a given opening 570 are removed; a partially-open position corresponds to a configuration in which some, but not all, of the slats covering a given opening 570 are removed; and a fully-closed position corresponds to a configuration in which none of the slats covering a given opening 570 are removed.
Although not specifically shown in
Although not shown in
Although not shown in
As shown in
Each wind baffle 500 includes a back plate 120, two or more variable air vents 540 on different sides, two or more openings 570 covered by the variable air vents 540, and a vent opening 190. Although not shown in
The outdoor unit 210 and its two air inlets 220 operate as described above with respect to
The two or more variable air vents 540 are configured as a plurality of slats formed side-by-side and covering corresponding openings 570. Each variable air vent 540 is further configured such that one or more of the slats that form the variable air vent 540 can be removed to allow air to flow through the corresponding opening 570. The amount of air that will flow through an opening 570 will depend on the number of slats that are provided and the number of slats that are removed. The more slats that are removed, the more air will flow through the corresponding opening 570.
The openings 570 are comparable to the openings 170 in the wind baffle 100 of
When none of the slats in a variable air vent 540 removed, the variable air vent 540 completely closes the opening 570, preventing any air from passing through the opening 470. When all of the slats in a variable air vent 540 are removed, the variable air vent 540 fully opens the opening 570, allowing air to freely flow through the opening 570. When some, but not all, of the slats in a variable air vent 540 are removed, the opening 570 is partially opened, allowing some air to pass through the opening 470, but not as much as if the opening 570 were fully open. By controlling number of slats removed in each variable air vent 540, a user can control the amount of air that passes through a corresponding opening 570.
In the embodiment of
In addition, although all of the above disclosed embodiments use the same mechanism for the variable air vents 140, 440, 540 in a given wind baffle 100, 410, 500, this is by way of example only. Alternate embodiments could employ different types of variable air vents 140, 440, 540 on the same wind baffle 100, 410, 500.
Outdoor Air-Conditioning Units with More Air Inlets
As shown in
The outdoor unit 710 is an outdoor air-conditioning unit that draws outdoor air in through the air inlets 720, passes the outdoor air over a refrigerant coil, exchanges heat between the outdoor air and the refrigerant coil, and then ejects the outdoor air through an air outlet (not shown).
Each wind baffle 100 is secured to the outdoor unit 710 by one or more securing mechanisms 130 (not shown in
As shown in
Two walls of each wind baffle 100 are shown in the embodiment of
In the embodiment of
The left wind baffle 100 has both the variable air vent 140 on the top of the drawing and the variable of air vent 140 on the bottom of the drawing at least partially open. In this configuration, air could enter into the left wind baffle 100 from either of the openings 170 on the top or the bottom, since those openings 170 are at least partially open.
The top wind baffle 100 has both the variable air vent 140 on the left of the drawing and the variable of air vent 140 on the right of the drawing at least partially open. In this configuration, air could enter into the top wind baffle 100 from either of the openings 170 on the left or the right, since those openings 170 are at least partially open.
The right wind baffle 100 has both the variable air vent 140 on the top of the drawing and the variable of air vent 140 on the bottom of the drawing at least partially open. In this configuration, air could enter into the right wind baffle 100 from either of the openings 170 on the top or the bottom, since those openings 170 are at least partially open.
One reason for configuring the variable air vents 140 differently on each of the wind baffles 100 connected to each air inlet 720 is to arrange the wind baffles 100 such that they minimize the amount of wind that blows onto the air inlets 720 during cold weather, since high winds blowing on air inlets 720 during cold weather can reduce the efficiency of the outdoor unit 710.
The particular configurations of the variable air vents 140 on the wind baffles 100 can be set based on knowledge of the prevailing winds surrounding the outdoor unit 710. Information on the prevailing winds can come from wind sensors, weather reports, or any other suitable information source.
The fact that the outdoor unit 710 has four air inlets 720 rather than the two air inlets 220 in the embodiments of
As shown in
The outdoor unit 210 is an outdoor air-conditioning unit that draws outdoor air in through the air inlets 220, passes the outdoor air over a refrigerant coil, exchanges heat between the outdoor air and the refrigerant coil, and then ejects the outdoor air through an air outlet (not shown).
Each wind baffle 100 is secured to the outdoor unit 210 by one or more securing mechanisms 130 (not shown in
As shown in
Two walls of each wind baffle 100 are shown in the embodiment of
In the embodiment of
In the embodiment of
Dynamically Controlled Variable Air Vents
Although the above embodiments describe situations in which a user will configure a the variable air vents 140, 440, 540 in a wind baffle 100, 410, 500 upon installation, other embodiments can allow for later modifications of the status of the variable air vents 140, 440, 540. In the various wind baffles 100, 410, 500 described above, modifications to the status of the variable air vents 140, 440, 540 may be made by a user at a time after installation. Likewise, it is possible in some embodiments to automatically and dynamically control the configuration of the variable air vents 140, 440, 540 using an air vent controller and wind direction information.
As shown in
Each wind baffle 910 includes a back plate 120, two or more louvers serving as variable air vents 440, two or more openings 470 covered by the variable air vents 440, a vent opening 190, and an air vent controller 930. Although not shown in
The outdoor unit 905 operates in a manner similar to the outdoor unit 210 of
The two or more variable air vents 440 are louvers that operate as described above with respect to
The air-conditioner controller 920 operates to control the operation of at least the outdoor unit 905. In various embodiments it can send air vent control signals to the air vent controllers 930. The air-conditioner controller 920 may be a microprocessor (e.g., a microcomputer), an application-specific integrated circuit (ASIC), a field-programmable gate array (FPGA), any suitable device for controlling the operation of the elements of the outdoor unit 210.
The air vent controllers 930 operate to control the configuration of an associated wind baffle 910. In various embodiments they can either collect wind direction information internally or receive wind direction information from an external source. Each air vent controller 930 can also receive air vent control signals from an external source such as the air-conditioner controller 920 or a different remote controller or data source. An air vent controller 930 may include a microprocessor (e.g., a microcomputer), an application-specific integrated circuit (ASIC), a field-programmable gate array (FPGA), any suitable device for controlling the operation of the elements of the outdoor unit 210.
The variable air vents 440 in the wind baffle 910 of
The vent controller 1010 operates to control the air vent opener 1020 based on air vent control signals and wind direction information. In the embodiment of
The vent controller 1010 may include a microprocessor (e.g., a microcomputer), an application-specific integrated circuit (ASIC), a field-programmable gate array (FPGA), any suitable device for controlling the operation of the vent opener 1020.
The vent opener 1020 is a device configured to alter the configuration of the variable air vents 440 associated with the wind baffle 910 containing the air vent controller 930. In one embodiment the vent opener 1020 can include a plurality of small motors, one associated with each of the variable air vents 440. These motors can operate to move the louvers that make up the variable air vents 440 to switch between a completely open position and a completely closed position, with multiple partially open positions in between. Alternate embodiments that use a different kind of variable air vent 440 could use a different mechanism for the vent opener 1020 as appropriate to the configuration of the variable air vent 440.
The wind direction sensor 1030 operates to determine a wind direction incident on the wind baffle 910 and provide that wind direction information to the vent controller 1010. In various embodiments the wind direction sensor 1030 can be any kind of suitable instrument for detecting a wind direction. In alternate embodiments, the wind direction information can be provided to the vent controller 1010 from an external source.
The memory 1040 can include a static memory (ROM, PROM, EPROM, masked), dynamic memory (RAM, SRAM, DRAM), and/or a hybrid memory (NVRAM, EEPROM, Flash) that holds information used by the vent controller 1010. This can include program information for operating the vent controller 1010, data used by the vent controller 1010 (e.g. previous wind direction information), technical information used by the vent controller 1010 to determine an optimal configuration for the wind baffle 910, etc.). In various embodiments, the memory 1040 can include a flash drive, a solid-state drive, a magnetic or optical disk drive, or any suitable memory device.
In operation, the wind direction sensor 1030 will detect the wind direction incident on the wind baffle 910. The vent controller 1010 will then receive this information and determine, based on the current wind direction, what the best configuration will be for the variable air vents 440 in its wind baffle 910 to maximize the efficiency of the outdoor unit 905. The vent controller 1010 then instructs the vent opener 1020 to alter the configuration of the variable air vents 440 in the wind baffle 910 such that they take on the desired configuration determined by the vent controller 1010. In the alternative, the vent controller 1010 can alter the configuration of the variable air vents 440 based on air vent control signals received from an external source.
In this way, the wind baffle 910 can dynamically account for variable winds. Thus, if the prevailing winds are from the south during the morning, from the east during the afternoon, and from the northeast in the evening, the wind baffle 910 can take on different configurations at different times during the day, further increasing the efficiency of the outdoor unit 905.
Absent dynamic control, a user will have to set a wind baffle 100, 410, 500, 910 in a single configuration that takes into account the most common prevailing wind direction and leave it in place until the user can manually alter it.
Although
This disclosure is intended to explain how to fashion and use various embodiments in accordance with the invention rather than to limit the true, intended, and fair scope and spirit thereof. The foregoing description is not intended to be exhaustive or to limit the invention to the precise form disclosed. Modifications or variations are possible in light of the above teachings. The embodiment(s) was chosen and described to provide the best illustration of the principles of the invention and its practical application, and to enable one of ordinary skill in the art to utilize the invention in various embodiments and with various modifications as are suited to the particular use contemplated. All such modifications and variations are within the scope of the invention as determined by the appended claims, as may be amended during the pendency of this application for patent, and all equivalents thereof, when interpreted in accordance with the breadth to which they are fairly, legally, and equitably entitled. The various circuits described above can be implemented in discrete circuits or integrated circuits, as desired by implementation.
Number | Name | Date | Kind |
---|---|---|---|
3584466 | Kaufman | Jun 1971 | A |
6430954 | Smith | Aug 2002 | B1 |
20080178624 | Zedney | Jul 2008 | A1 |
20120036878 | Bush | Feb 2012 | A1 |
20120103482 | Simmons | May 2012 | A1 |
20130005238 | Brandt | Jan 2013 | A1 |
20130130611 | Dinicolas | May 2013 | A1 |
20140260363 | Bush | Sep 2014 | A1 |
20170254602 | Bronicki | Sep 2017 | A1 |
Number | Date | Country |
---|---|---|
102052748 | May 2011 | CN |
200161702 | Dec 1999 | KR |
20000017772 | Oct 2000 | KR |
Number | Date | Country | |
---|---|---|---|
20210063029 A1 | Mar 2021 | US |