The present invention relates to a wind brace band connector and system comprising at least a first and a second one-piece connector element for connecting at least one perforated band, having and defining a longitudinal band axis, to a connection bracket attached to a building, or for connecting at least two perforated bands with each other, each connector element having a thickness. The present invention also relates to a wind brace connector assembly system for connecting a perforated band to a building.
Connecting the perforated band in order to achieve the desired length needs to be carried out during the actual installation of the perforated band. Due to the weight of the perforated band, it is not convenient just to have longer bands, and hence they often need to be extended. Due to a limited flexibility of the perforated bands, the worker often needs to perform the connection of the bands in an inconvenient place e.g. when being situated on top of trusses. When the worker has his focus on the dangerous place e.g. high above the ground where he is working, a number of risks of getting a poor connecting or mounting quality are often seen using traditional connectors such as bolts or rivets. These risks could be the worker forgetting one or more of the necessary bolts or nuts which and obviously causes the connection to be weak. Furthermore, the need of multiple tools to perform the connection renders it highly likely that the worker either forgets one or more on the ground necessitating the worker to climb down and up again or dropping one the tools during the use of it.
Hence, there is a need for a wind brace connector that is easy to connect to a perforated band i.e. a wind brace strap using no or just a simple tool.
Furthermore, when connecting two perforated bands there is a need for a wind brace connector that minimises the risk of applying a torque to the perforated band and/or the connector itself.
The present invention addresses the above disadvantages and drawbacks of the prior art. More specifically, the present invention provides an improved wind brace band connector that is simple to use and easy to install.
Furthermore, the present invention provides an improved wind brace band connector which is cheaper to manufacture.
The present invention provides an improved system which is easy to adjust and still provides a torque free connection.
The above considerations, together with numerous other considerations, advantages and features, which will become evident from the below description, are addressed by the present invention. In a first aspect, the present invention provides a wind brace band connector comprising at least a first and a second one-piece connector element for connecting at least one perforated band defining a longitudinal band axis to a connection bracket attached to a building, or for connecting at least two perforated bands with each other, each connector element having a thickness and comprising:
In this way, the pins of the first connector element and the pins of the second connector element are respectively inserted in the holes of the other connector element i.e. the pins of the first connector element are inserted in the holes of the second connector element and vice versa. In this way, a very strong double shear connection is possible using the exact same shape of the two connector elements.
The pins of the connector elements may registrate the perforated band. Hence, the pins being both registration pins for the perforated band as well as being able to withstand the load from the band.
Moreover, a part of the rim area of the first and/or the second body section may comprise at least one wall section extending substantially perpendicular to the body section(s).
In this way, it is possible that the bracket elements are positioned correctly in relation to each other in the transverse direction i.e. perpendicular to the longitudinal axis. The wall sections may extend at least two times the thickness of the body section i.e. two times the thickness of the connector element. In this way, it is achieved that the wall sections extend substantially the height of both the other connector element as well as the perforated band (wind brace band). The wall sections may extend beyond the height of the pins.
In addition, the wall section may comprise a locking mechanism to lock the connector elements in relation to each other.
In this way, it is possible that the two connector elements are kept fixed in their mutual position when mounted. Hence, the worker needs no bolts or tools for locking the two connector elements together. The locking means may be adapted to make an audible sound when locked. In this way, it is possible for the worker both visually and in an audible way to ensure that the two connector elements are locked together.
Furthermore, the common section may comprise an embossed section. In this way, the rigidity of the connector element is increased.
Also, the number of pins in each bracket element may be at least two. In this way, it is possible that the connector elements are kept in position when connected to a bracket or a further connector element.
Additionally, the pins may project more than two times the thickness of the connector element. In this way, it is possible that the in the mounted situation, the pins extend through the perforated band and furthermore extend fully through the matching holes of the other connector element.
In an embodiment, at least one of the pins is longer than the other pin(s). In this way, it is possible that the at least one pin has sufficient length to be folded and lock the connector elements together.
In an embodiment, the connector elements are made of high strength steel, galvanised steel, high strength galvanised steel or stainless steel. In this way, a strong durable and still lightweight bracket element is possible. Furthermore, the bracket element may be punched, stamped and bent and used with no treatment of the surface after the stamping/punching/bending.
In an embodiment, the connector element may be made as a monolithic whole. In this way, no welding or other assembly is needed.
The present invention further relates to a wind brace connector assembly system for connecting a perforated band to a building, the wind brace connector assembly comprising a bracket connected to a structure of a building and a first and a second connector element, wherein the bracket comprises bracket holes adapted to receive the pins of a connector element and wherein the connector elements in the mounted state in the one end clamps around a section of the bracket and the other end clamps around a perforated band.
In this way, it is possible that the perforated band i.e. a wind brace strap is connected to the bracket without the use of special tools. In an embodiment, no additional parts are necessary i.e. no bolts the like are needed. Hence, the installation is fast and without risks of poor installation.
Furthermore, the bracket may comprise elongate bracket holes.
In this way, it is possible to adjust the position of the connector elements in relation to the bracket. Hence, it is possible to achieve a more direct load on the bracket from the perforated band via the connector element.
In addition, the centreline of the elongate bracket holes may be curved.
In this way, it is possible to adjust the load direction by rotation and still maintain a predetermined load distribution form the connector elements i.e. the perforated band to the bracket.
Also, the bracket may be adapted to receive at pins arranged at two different transverse lines of the connector element.
In this way, a strong connection is possible using more than one pin.
In an embodiment, the area of a hole the one body section may be less than 2-30% larger than the cross-sectional area of the matching pin to this hole i.e. a pin of the other connector element. In this way, it is possible that a firm contact is achieved between the pins and the holes during load. Hence, a more preferred overall load distribution in connection is possible.
The invention and its many advantages will be described in more detail below, by way of example only, with reference to the accompanying schematic drawings, which for the purpose of illustration show some non-limiting embodiments and in which:
All the figures are highly schematic and not necessarily to scale, and they show only those parts which are necessary in order to elucidate the invention, other parts being omitted or merely suggested.
The pins 11 of the first body section 5 are arranged in a manner capable of being received in the perforations 13 of the band 2.
The projecting pins 11 identify a pin side PS and an opposing non-pin side NPS of the connector element 3. The holes 12 of the second body section 6 are arranged in the same pattern as the perforations 12 of the perforated band 2 and hence the pattern of the pins 11.
The first body section 5 and the second body section 6 of each connector element 3 are connected to each other via a common section 15. The common section 15 is made of the same piece of material as the first and second body sections 5, 6. In this embodiment, the common section 15 has an embossed section for increasing the rigidity of the common section.
It is shown that the connector element 3a and 3b are identical but in the installed situation the one connector element is turned 180° in relation to the other. In this mounted situation, the projecting pins 11 of the one connector element 3 is inserted through the perforations 13 of the perforated band 2 and through the holes 12 of the second body section 6. The longer of the pins acts as registration pins in order to guide the assembly of the two connector elements with the perforated band.
It is furthermore, shown that when in use for connecting a perforated band 2 to another perforated band 2, the pin-side PS of the first connector element 3a is facing the pin-side PS of the second connector element 3b, and the connector elements 3a, 3b are turned 180° in relation to each other. In this way, a strong connection is achieved using two uniform connector elements 3.
Although the invention has been described in the above in connection with preferred embodiments of the invention, it will be evident for a person skilled in the art that several modifications are conceivable without departing from the invention as defined by the following claims.
Number | Date | Country | Kind |
---|---|---|---|
PA 2020 00293 | Mar 2020 | DK | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/EP2021/055522 | 3/4/2021 | WO |