This application claims the benefit of and priority to Italian Patent Application No. MI2009A 000572, filed on Apr. 9, 2009, the entire contents of which are incorporated herein.
Known nacelles of wind power turbines define a compartment housing many of the control and actuating devices of the wind power turbine. The blade assembly comprises a hub; and a number of blades adjustable with respect to the hub about their longitudinal axes, to adjust the pitch of the blades. The nacelle also houses the blade pitch adjustment actuating and control devices. The nacelle of some known wind power turbines is also designed to house frequency converters and transformers. Modern wind power turbines have pylons ranging between 60 meters (196.85 feet) and 120 meters (393.7 feet) in height. So, to carry out the necessary maintenance of the actuating and control devices, the mechanical parts of the nacelle, and the instruments inside it, easy access by maintenance workers to the inside of the nacelle is of vital importance. At present, wind power turbines are normally equipped with service ladders inside the pylon, and with a winch inside the wind power turbine for hoisting heavy, bulky material; and small parts are sometimes carried by workers in backpacks.
Climbing up and down ladders, possibly several times a shift and carrying backpacks, is very tiring, uneconomical, and at times even dangerous.
For this reason, many known wind power turbines are equipped with a lift, housed inside the pylon and movable along a first axis, for carrying two or three workers, tools, instruments, and medium-sized spare parts, and which connects the bottom end of the pylon to a panoramic platform fixed to the pylon, beneath the nacelle, and of the type described in U.S. Pat. No. 6,998,729 B1.
Known lifts, however, stop well below the nacelle, which means the last part of the ascent to the nacelle must be made by ladder, with all the drawbacks referred to above.
The reason the lift stops short of the top of the pylon is because of the cable bundle, which is normally wound into a ring underneath the nacelle, to allow the nacelle to rotate with respect to the pylon without stressing the cables. And since the nacelle is normally designed to make two and a half turns with respect to the pylon, the ring formed by the cable bundle underneath the nacelle is relatively large and normally hinders access to the nacelle.
The present disclosure relates to a wind power turbine for producing electric energy.
More specifically, the present disclosure relates to a wind power turbine comprising a pylon extending from a bottom end to a top end; a nacelle fitted to the top end of the pylon to rotate about a first axis; an electric generator fitted to the nacelle to produce electric energy; a blade assembly, which rotates with respect to the nacelle about a second axis; and an electric cable bundle extending from the electric generator to transfer electric energy between the nacelle and a point inside the pylon, such as at the bottom end of the pylon.
Accordingly, it is an object of the present disclosure to provide a wind power turbine designed to eliminate the drawbacks of the known art.
Another object of the present disclosure is to provide a wind power turbine affording more space as compared with known wind power turbines.
According to the present disclosure, there is provided a wind power turbine for producing electric energy, the wind power turbine comprising a pylon extending from a bottom end to a top end; a nacelle fitted to the top end of the pylon to rotate about a first axis; an electric generator fitted to the nacelle to produce electric energy; a blade assembly, which rotates with respect to the nacelle about a second axis; an electric cable bundle extending from the electric generator to a point inside the pylon, such as at the bottom end of the pylon; and a guide device for guiding the cable bundle; the guide device being connected to the cable bundle, and being configured to divert the cable bundle radially from a point close to the first axis, to a point well or substantially away from the first axis, and to rotate the cable bundle.
The present disclosure thus provides for greatly reducing hindrance by the cables, by the guide device guiding the cables in orderly fashion, without impairing rotation of the nacelle with respect to the pylon, and without subjecting individual cables to torsional stress along the guide device.
Additional features and advantages are described in, and will be apparent from, the following Detailed Description and the figures.
A non-limiting embodiment of the present disclosure will be described by way of example with reference to the accompanying drawings, in which:
Referring now to the example embodiments of the present disclosure illustrated in
Pylon 2 is substantially defined by a truncated-cone-shaped wall 7 fixed to a foundation structure 8 and fitted at the top with a thrust bearing 9, on which nacelle 3 is mounted. An actuating device (not shown) at thrust bearing 9 selectively orients nacelle 3 about axis A1, as wind power turbine 1 is running, to position nacelle 3 and blade assembly 4 upwind and optimize performance of wind power turbine 1.
Pylon 2 has access openings formed in wall 7 and closed by doors 10, only one of which is shown in
Nacelle 3 is substantially in the form of a tubular elbow, extends partly along axis A1 and partly along axis A2, is substantially defined by a wall 11, and houses actuators and component parts (not shown).
Wind power turbine 1 comprises a cable bundle 12 connecting nacelle 3 to the bottom end of pylon 2, and which, in the example shown, connects electric generator 5 to a transformer (not shown) at the bottom end of pylon 2.
Blade assembly 4 comprises a hollow hub 13; and three blades 14 (only one shown in
Electric generator 5 is fitted to and projects from nacelle 3, extends about axis A2, and, in the example shown, is a permanent-magnet, synchronous generator with a hollow rotor connected directly to hub 13 by a sleeve (not shown). This structure also allows access by workers, through nacelle 3 and the sleeve, to the instruments and construction parts inside hub 13.
Panoramic platform 6 comprises a supporting frame 15, a roof 16, a floor 17, and windows 18. Frame 15 is fixed to, more specifically is suspended from, nacelle 3, extends about pylon 2, beneath nacelle 3, and comprises a bottom ring 19, which supports wheels 20 contacting wall 7 of pylon 9, and rotates about pylon 2 together with nacelle 3.
Access to panoramic platform 6 is through the door 10 in wall 7 of pylon 2, as shown in
Panoramic platform 6 is asymmetrical with respect to axis A1. That is, the radial extension of panoramic platform 6 is greater on the opposite side to blades 14 than on the side facing blades 14.
Wind power turbine 1 also comprises a lift 21 for carrying workers and spare parts between the bottom end of pylon 2 and nacelle 3, or visitors between the bottom end of pylon 2 and panoramic platform 6.
With reference to
More specifically, second station 24 of lift 21 is located inside nacelle 3, which has a compartment 26 designed to house elevator car 22 at second station 24, regardless of the angular position of nacelle 3 about axis A1 and with respect to pylon 2.
Lift 21 comprises a guide 27 located inside and fixed to pylon 2, and extending along axis A1; and a carriage 28 fitted to guide 27 along axis A1. More specifically, guide 27 is contained within pylon 2, and car 22 is mounted on top of carriage 28 so that, at second station 24, elevator car 22 is located inside nacelle 3, and carriage 28 inside pylon 2.
As shown more clearly in
With reference to
Pylon 2 comprises an annular plate 32 located at the top end of pylon 2 and defining a walkway of compartment 26.
Wind power turbine 1 comprises a guide device 33 for guiding cable bundle 12 and located inside compartment 26; and a raceway 34 fixed to wall 7 of pylon 2 to protect and guide cable bundle 12 inside pylon 2.
With reference to
Shaft 36 comprises a member 40, next to universal joint 39, connecting cable bundle 12 integral with shaft 36, and which, as shown in
Shaft 35 comprises an identical member 40, next to universal joint 38, for connecting cable bundle 12 integral with shaft 35.
Shaft 36 also comprises a flange 42 integral with shaft 36 and fitted to pylon 2 with the interposition of a bearing 43. In one embodiment, member 40 of shaft 36 is also connected to pylon 2 with the interposition of a bearing 43 and of a structure 44 fixed to pylon 2.
As nacelle 3 rotates about axis A1 with respect to pylon 2, shafts 35, 36, 37 rotate about respective axes A1, A3, A4, so cable bundle 12 also rotates about axis A3 and twists inside raceway 34. The height of pylon 2, however, prevents the twisting from severely stressing the cables.
Guide device 33 is substantially defined by an elongated member, which comprises shafts 35, 36, 37, is articulated to extend along a designated guide path, and is fitted to cable bundle 12. One end of the elongated member is fixed to nacelle 3 to rotate together with nacelle 3 and cable bundle 12, and the other end of the elongated member is fitted in rotary manner to pylon 2.
As shown in
Rotation of cable bundle 12 about the elongated member, in fact, produces no torsional stress on individual cables, at least where the cable bundle is connected to the elongated member. Twisting of individual cables in cable bundle 12 occurs inside raceway 34, and is distributed over such a long length as not to impair the integrity of the cables.
With reference to
Actuator 46 comprises an electric motor 48, and is fitted to carriage 28, underneath elevator car 22. In the example shown in the drawings, and particularly in
Elevator car 22 extends along an axis A5, and rotates selectively about axis A5 with respect to carriage 28. More specifically, elevator car 22 is mounted to rotate about axis A5 on frame 49 of carriage 28.
In one embodiment of the present disclosure, elevator car 22 is in the form of a cylinder extending about axis A5, which coincides with axis A1 of pylon 2.
With reference to
A cage 53 inside pylon 2 houses guide 27, and defines a compartment 54 in which elevator car 22 and carriage 28 run.
Cage 53 has gates 55 for access to elevator car 22 at first station 23 and intermediate station 25.
Cage 53 also isolates compartment 54 from the rest of the space inside pylon 2 housing cables and instruments (not shown) that could interfere with elevator car 22 and carriage 28 as these move along axis A1.
With reference to
The ladder can be used along compartment 54, as well as on the opposite side; for which purpose, a hatch 56 is formed in annular plate 32. Wind power turbine 1 also has a ladder 57 on the outside of pylon 2, for easy access to guide 27, and to enable use of guide 27 on the compartment 54 side, even when elevator car 22 is at first station 23.
Electric motor 48 can be powered by electric cables (not shown) or sliding contacts (not shown).
In one embodiment described, given the cylindrical shape of elevator car 22, the volume occupied inside nacelle 3 remains unchanged, regardless of the position of nacelle 3 with respect to pylon 2, and the opening in annular plate 32 is limited to the circular cross section of elevator car 22.
In one embodiment, housing guide device 33 in nacelle 3 has the advantage of creating ample room inside nacelle 3, and enabling access to nacelle 3 from below.
The present disclosure, however, also applies in the event guide device 33 is housed entirely inside pylon 2; in which case, guide device 33 again provides for increasing the space available inside wind power turbine 1.
In another embodiment, the guide device may comprise at least two articulated shafts connected to rotate about respective axes, or one articulated shaft designed to assume a number of configurations.
In another embodiment, the guide device provides for increasing the space inside the wind power turbine, and so enabling installation of a lift, freight lift, winch, and other equipment for operating and servicing the wind power turbine.
It should be understood that various changes and modifications to the presently preferred embodiments described herein will be apparent to those skilled in the art, for example, to the shape of the inflatable annular structures or to the means of connecting them. Such changes and modifications can be made without departing from the spirit and scope of the present subject matter and without diminishing its intended advantages. It is therefore intended that such changes and modifications be covered by the appended claims.
Number | Date | Country | Kind |
---|---|---|---|
MI2009A0572 | Apr 2009 | IT | national |
Number | Name | Date | Kind |
---|---|---|---|
1894357 | Manikowske et al. | Jan 1933 | A |
1948854 | Heath | Feb 1934 | A |
1979813 | Reis | Nov 1934 | A |
2006172 | Klappauf | Jun 1935 | A |
2040218 | Soderberg | May 1936 | A |
2177801 | Erren | Oct 1939 | A |
2469734 | Ledwith | May 1949 | A |
2496897 | Strickland | Feb 1950 | A |
2655611 | Sherman | Oct 1953 | A |
2739253 | Plumb | Mar 1956 | A |
2806160 | Brainard | Sep 1957 | A |
2842214 | Prewitt | Jul 1958 | A |
2903610 | Bessiere | Sep 1959 | A |
3004782 | Meermans | Oct 1961 | A |
3072813 | Reijnst et al. | Jan 1963 | A |
3083311 | Krasnow | Mar 1963 | A |
3131942 | Ertaud | May 1964 | A |
3168686 | King et al. | Feb 1965 | A |
3221195 | Hoffmann | Nov 1965 | A |
3363910 | Toronchuk | Jan 1968 | A |
3364523 | Schippers | Jan 1968 | A |
3392910 | Tanzberger | Jul 1968 | A |
3468548 | Webb | Sep 1969 | A |
3700247 | Butler et al. | Oct 1972 | A |
3724861 | Lesiecki | Apr 1973 | A |
3746349 | Smale et al. | Jul 1973 | A |
3748089 | Boyer et al. | Jul 1973 | A |
3789252 | Abegg | Jan 1974 | A |
3841643 | McLean | Oct 1974 | A |
3860843 | Kawasaki et al. | Jan 1975 | A |
3942026 | Carter | Mar 1976 | A |
3963247 | Nommensen | Jun 1976 | A |
3968969 | Mayer et al. | Jul 1976 | A |
4022479 | Orlowski | May 1977 | A |
4061926 | Peed | Dec 1977 | A |
4087698 | Myers | May 1978 | A |
4273343 | Visser | Jun 1981 | A |
4289970 | Deibert | Sep 1981 | A |
4291235 | Bergey, Jr. et al. | Sep 1981 | A |
4292532 | Leroux | Sep 1981 | A |
4336649 | Glaser | Jun 1982 | A |
4339874 | Mc'Carty et al. | Jul 1982 | A |
4348604 | Thode | Sep 1982 | A |
4350897 | Benoit | Sep 1982 | A |
4354126 | Yates | Oct 1982 | A |
4368895 | Okamoto et al. | Jan 1983 | A |
4398773 | Boden et al. | Aug 1983 | A |
4452046 | Valentin | Jun 1984 | A |
4482831 | Notaras et al. | Nov 1984 | A |
4490093 | Chertok et al. | Dec 1984 | A |
4517483 | Hucker et al. | May 1985 | A |
4517484 | Dacier | May 1985 | A |
4521026 | Eide | Jun 1985 | A |
4585950 | Lund | Apr 1986 | A |
4613779 | Meyer | Sep 1986 | A |
4638200 | Le Corre et al. | Jan 1987 | A |
4648801 | Wilson | Mar 1987 | A |
4694654 | Kawamura | Sep 1987 | A |
4700096 | Epars | Oct 1987 | A |
4714852 | Kawada et al. | Dec 1987 | A |
4720640 | Anderson et al. | Jan 1988 | A |
4722661 | Mizuno | Feb 1988 | A |
4724348 | Stokes | Feb 1988 | A |
4761590 | Kaszman | Aug 1988 | A |
4792712 | Stokes | Dec 1988 | A |
4801244 | Stahl | Jan 1989 | A |
4866321 | Blanchard et al. | Sep 1989 | A |
4900965 | Fisher | Feb 1990 | A |
4906060 | Claude | Mar 1990 | A |
4973868 | Wust | Nov 1990 | A |
4976587 | Johnston et al. | Dec 1990 | A |
5004944 | Fisher | Apr 1991 | A |
5063318 | Anderson | Nov 1991 | A |
5090711 | Becker | Feb 1992 | A |
5091668 | Cuenot et al. | Feb 1992 | A |
5177388 | Hotta et al. | Jan 1993 | A |
5191255 | Kloosterhouse et al. | Mar 1993 | A |
5275139 | Rosenquist | Jan 1994 | A |
5280209 | Leupold et al. | Jan 1994 | A |
5281094 | McCarty et al. | Jan 1994 | A |
5298827 | Sugiyama | Mar 1994 | A |
5302876 | Iwamatsu et al. | Apr 1994 | A |
5311092 | Fisher | May 1994 | A |
5315159 | Gribnau | May 1994 | A |
5331238 | Johnsen | Jul 1994 | A |
5410997 | Rosenquist | May 1995 | A |
5419683 | Peace | May 1995 | A |
5456579 | Olson | Oct 1995 | A |
5483116 | Kusase et al. | Jan 1996 | A |
5506453 | McCombs | Apr 1996 | A |
5579800 | Walker | Dec 1996 | A |
5609184 | Apel et al. | Mar 1997 | A |
5663600 | Baek et al. | Sep 1997 | A |
5670838 | Everton | Sep 1997 | A |
5696419 | Rakestraw et al. | Dec 1997 | A |
5704567 | Maglieri | Jan 1998 | A |
5746576 | Bayly | May 1998 | A |
5777952 | Nishimura et al. | Jul 1998 | A |
5783894 | Wither | Jul 1998 | A |
5793144 | Kusase et al. | Aug 1998 | A |
5798632 | Muljadi | Aug 1998 | A |
5801470 | Johnson et al. | Sep 1998 | A |
5811908 | Iwata et al. | Sep 1998 | A |
5814914 | Caamaño | Sep 1998 | A |
5844333 | Sheerin | Dec 1998 | A |
5844341 | Spooner et al. | Dec 1998 | A |
5857762 | Schwaller | Jan 1999 | A |
5886441 | Uchida et al. | Mar 1999 | A |
5889346 | Uchida et al. | Mar 1999 | A |
5894183 | Borchert | Apr 1999 | A |
5925964 | Kusase et al. | Jul 1999 | A |
5952755 | Lubas | Sep 1999 | A |
5961124 | Muller | Oct 1999 | A |
5973435 | Irie et al. | Oct 1999 | A |
5986374 | Kawakami | Nov 1999 | A |
5986378 | Caamaño | Nov 1999 | A |
6013968 | Lechner et al. | Jan 2000 | A |
6037692 | Miekka et al. | Mar 2000 | A |
6064123 | Gislason | May 2000 | A |
6067227 | Katsui et al. | May 2000 | A |
6089536 | Watanabe et al. | Jul 2000 | A |
6093984 | Shiga et al. | Jul 2000 | A |
6127739 | Appa | Oct 2000 | A |
6172429 | Russell | Jan 2001 | B1 |
6177746 | Tupper et al. | Jan 2001 | B1 |
6193211 | Watanabe et al. | Feb 2001 | B1 |
6194799 | Miekka et al. | Feb 2001 | B1 |
6215199 | Lysenko et al. | Apr 2001 | B1 |
6232673 | Schoo et al. | May 2001 | B1 |
6278197 | Appa | Aug 2001 | B1 |
6285090 | Brutsaert et al. | Sep 2001 | B1 |
6326711 | Yamaguchi et al. | Dec 2001 | B1 |
6365994 | Watanabe et al. | Apr 2002 | B1 |
6373160 | Schrödl | Apr 2002 | B1 |
6376956 | Hosoya | Apr 2002 | B1 |
6378839 | Watanabe et al. | Apr 2002 | B2 |
6384504 | Ehrhart et al. | May 2002 | B1 |
6417578 | Chapman et al. | Jul 2002 | B1 |
6428011 | Oskouei | Aug 2002 | B1 |
6452287 | Looker | Sep 2002 | B1 |
6452301 | Van Dine et al. | Sep 2002 | B1 |
6455976 | Nakano | Sep 2002 | B1 |
6472784 | Miekka et al. | Oct 2002 | B2 |
6474653 | Hintenlang et al. | Nov 2002 | B1 |
6476513 | Gueorguiev | Nov 2002 | B1 |
6483199 | Umemoto et al. | Nov 2002 | B2 |
6492743 | Appa | Dec 2002 | B1 |
6492754 | Weiglhofer et al. | Dec 2002 | B1 |
6499532 | Williams | Dec 2002 | B1 |
6504260 | Debleser | Jan 2003 | B1 |
6515390 | Lopatinsky et al. | Feb 2003 | B1 |
6520737 | Fischer et al. | Feb 2003 | B1 |
6548932 | Weiglhofer et al. | Apr 2003 | B1 |
6590312 | Seguchi et al. | Jul 2003 | B1 |
6603232 | Van Dine et al. | Aug 2003 | B2 |
6617747 | Petersen | Sep 2003 | B1 |
6629358 | Setiabudi et al. | Oct 2003 | B2 |
6664692 | Kristoffersen | Dec 2003 | B1 |
6676122 | Wobben | Jan 2004 | B1 |
6683397 | Gauthier et al. | Jan 2004 | B2 |
6700260 | Hsu et al. | Mar 2004 | B2 |
6700288 | Smith | Mar 2004 | B2 |
6707224 | Petersen | Mar 2004 | B1 |
6713891 | Kirkegaard et al. | Mar 2004 | B2 |
6720688 | Schiller | Apr 2004 | B1 |
6727624 | Morita et al. | Apr 2004 | B2 |
6746217 | Kim et al. | Jun 2004 | B2 |
6759758 | Torres Martinez | Jul 2004 | B2 |
6762525 | Maslov et al. | Jul 2004 | B1 |
6781276 | Stiesdal et al. | Aug 2004 | B1 |
6784564 | Wobben | Aug 2004 | B1 |
6794781 | Razzell et al. | Sep 2004 | B2 |
6828710 | Gabrys | Dec 2004 | B1 |
6856042 | Kubota | Feb 2005 | B1 |
6879075 | Calfo et al. | Apr 2005 | B2 |
6888262 | Blakemore | May 2005 | B2 |
6891299 | Coupart et al. | May 2005 | B2 |
6903466 | Mercier et al. | Jun 2005 | B1 |
6903475 | Ortt et al. | Jun 2005 | B2 |
6906444 | Hattori et al. | Jun 2005 | B2 |
6911741 | Petteersen et al. | Jun 2005 | B2 |
6921243 | Canini et al. | Jul 2005 | B2 |
6931834 | Jones | Aug 2005 | B2 |
6933645 | Watson | Aug 2005 | B1 |
6933646 | Kinoshita | Aug 2005 | B2 |
6942454 | Ohlmann | Sep 2005 | B2 |
6945747 | Miller | Sep 2005 | B1 |
6949860 | Hama et al. | Sep 2005 | B2 |
6951443 | Blakemore | Oct 2005 | B1 |
6972498 | Jamieson et al. | Dec 2005 | B2 |
6983529 | Ortt et al. | Jan 2006 | B2 |
6984908 | Rinholm et al. | Jan 2006 | B2 |
6987342 | Hans | Jan 2006 | B2 |
6998729 | Wobben | Feb 2006 | B1 |
7004724 | Pierce et al. | Feb 2006 | B2 |
7008172 | Selsam | Mar 2006 | B2 |
7008348 | LaBath | Mar 2006 | B2 |
7016006 | Song | Mar 2006 | B2 |
7021905 | Torrey et al. | Apr 2006 | B2 |
7028386 | Kato et al. | Apr 2006 | B2 |
7033139 | Wobben | Apr 2006 | B2 |
7038343 | Agnes et al. | May 2006 | B2 |
7042109 | Gabrys | May 2006 | B2 |
7057305 | Krüger-Gotzmann et al. | Jun 2006 | B2 |
7075192 | Bywaters et al. | Jul 2006 | B2 |
7081696 | Ritchey | Jul 2006 | B2 |
7088024 | Agnes et al. | Aug 2006 | B2 |
7091642 | Agnes et al. | Aug 2006 | B2 |
7095128 | Canini et al. | Aug 2006 | B2 |
7098552 | McCoin | Aug 2006 | B2 |
7109600 | Bywaters et al. | Sep 2006 | B1 |
7111668 | Rürup | Sep 2006 | B2 |
7116006 | McCoin | Oct 2006 | B2 |
7119469 | Ortt et al. | Oct 2006 | B2 |
7154191 | Jansen et al. | Dec 2006 | B2 |
7161260 | Krüger-Gotzmann et al. | Jan 2007 | B2 |
7166942 | Yokota | Jan 2007 | B2 |
7168248 | Sakamoto et al. | Jan 2007 | B2 |
7168251 | Janssen | Jan 2007 | B1 |
7179056 | Sieffriedsen | Feb 2007 | B2 |
7180204 | Grant et al. | Feb 2007 | B2 |
7183665 | Bywaters et al. | Feb 2007 | B2 |
7196446 | Hans | Mar 2007 | B2 |
7199485 | Wobben | Apr 2007 | B2 |
7205678 | Casazza et al. | Apr 2007 | B2 |
7217091 | LeMieux | May 2007 | B2 |
7259472 | Miyake et al. | Aug 2007 | B2 |
7281501 | Leufen et al. | Oct 2007 | B2 |
7285890 | Jones et al. | Oct 2007 | B2 |
7323792 | Sohn | Jan 2008 | B2 |
7345376 | Costin | Mar 2008 | B2 |
7358637 | Tapper | Apr 2008 | B2 |
7377163 | Miyagawa | May 2008 | B2 |
7385305 | Casazza et al. | Jun 2008 | B2 |
7385306 | Casazza et al. | Jun 2008 | B2 |
7392988 | Moldt et al. | Jul 2008 | B2 |
7427814 | Bagepalli et al. | Sep 2008 | B2 |
7431567 | Bevington et al. | Oct 2008 | B1 |
7443066 | Salamah et al. | Oct 2008 | B2 |
7458261 | Miyagawa | Dec 2008 | B2 |
7482720 | Gordon et al. | Jan 2009 | B2 |
7548008 | Jansen et al. | Jun 2009 | B2 |
7550863 | Versteegh | Jun 2009 | B2 |
7687932 | Casazza et al. | Mar 2010 | B2 |
20020047418 | Seguchi et al. | Apr 2002 | A1 |
20020047425 | Coupart et al. | Apr 2002 | A1 |
20020056822 | Watanabe et al. | May 2002 | A1 |
20020063485 | Lee et al. | May 2002 | A1 |
20020089251 | Tajima et al. | Jul 2002 | A1 |
20020148453 | Watanabe et al. | Oct 2002 | A1 |
20030011266 | Morita et al. | Jan 2003 | A1 |
20030102677 | Becker et al. | Jun 2003 | A1 |
20030137149 | Northrup et al. | Jul 2003 | A1 |
20030230899 | Torres Martinez | Dec 2003 | A1 |
20040086373 | Page, Jr. | May 2004 | A1 |
20040094965 | Kirkegaard et al. | May 2004 | A1 |
20040119292 | Datta et al. | Jun 2004 | A1 |
20040150283 | Calfo et al. | Aug 2004 | A1 |
20040151575 | Pierce et al. | Aug 2004 | A1 |
20040151577 | Pierce et al. | Aug 2004 | A1 |
20040189136 | Kolomeitsev et al. | Sep 2004 | A1 |
20050002783 | Hiel et al. | Jan 2005 | A1 |
20050002787 | Wobben | Jan 2005 | A1 |
20050082839 | McCoin | Apr 2005 | A1 |
20050230979 | Bywaters et al. | Oct 2005 | A1 |
20050280264 | Nagy | Dec 2005 | A1 |
20060000269 | LeMieux et al. | Jan 2006 | A1 |
20060001269 | Jansen et al. | Jan 2006 | A1 |
20060006658 | McCoin | Jan 2006 | A1 |
20060012182 | McCoin | Jan 2006 | A1 |
20060028025 | Kikuchi et al. | Feb 2006 | A1 |
20060066110 | Jansen et al. | Mar 2006 | A1 |
20060071575 | Jansen et al. | Apr 2006 | A1 |
20060091735 | Song et al. | May 2006 | A1 |
20060125243 | Miller | Jun 2006 | A1 |
20060131985 | Qu et al. | Jun 2006 | A1 |
20060152012 | Wiegel et al. | Jul 2006 | A1 |
20060152015 | Bywaters et al. | Jul 2006 | A1 |
20060152016 | Bywaters et al. | Jul 2006 | A1 |
20070020109 | Takahashi et al. | Jan 2007 | A1 |
20070116567 | Luetze | May 2007 | A1 |
20070187954 | Struve et al. | Aug 2007 | A1 |
20070187956 | Wobben | Aug 2007 | A1 |
20070222223 | Bagepalli et al. | Sep 2007 | A1 |
20070222226 | Casazza et al. | Sep 2007 | A1 |
20070222227 | Casazza et al. | Sep 2007 | A1 |
20080003105 | Nies | Jan 2008 | A1 |
20080025847 | Teipen | Jan 2008 | A1 |
20080050234 | Ingersoll et al. | Feb 2008 | A1 |
20080107526 | Wobben | May 2008 | A1 |
20080118342 | Seidel et al. | May 2008 | A1 |
20080197636 | Tilscher et al. | Aug 2008 | A1 |
20080197638 | Wobben | Aug 2008 | A1 |
20080246224 | Pabst et al. | Oct 2008 | A1 |
20080290664 | Kruger | Nov 2008 | A1 |
20080303281 | Krueger | Dec 2008 | A1 |
20080309189 | Pabst et al. | Dec 2008 | A1 |
20080315594 | Casazza et al. | Dec 2008 | A1 |
20090045628 | Erdman et al. | Feb 2009 | A1 |
20090060748 | Landa et al. | Mar 2009 | A1 |
20090094981 | Eggleston | Apr 2009 | A1 |
20090096309 | Pabst et al. | Apr 2009 | A1 |
20090206610 | Martin et al. | Aug 2009 | A1 |
20090302702 | Pabst et al. | Dec 2009 | A1 |
20100006710 | Lyness et al. | Jan 2010 | A1 |
20100019502 | Pabst et al. | Jan 2010 | A1 |
20100026010 | Pabst | Feb 2010 | A1 |
20100117362 | Vihriala et al. | May 2010 | A1 |
20100123318 | Casazza et al. | May 2010 | A1 |
Number | Date | Country |
---|---|---|
2404939 | Apr 2004 | CA |
2518742 | Sep 2004 | CA |
2 669 371 | Dec 2009 | CA |
1554867 | Dec 2004 | CN |
1130913 | Jun 1962 | DE |
2164135 | Jul 1973 | DE |
2322458 | Nov 1974 | DE |
2506160 | Aug 1976 | DE |
2922885 | Dec 1980 | DE |
3638129 | May 1988 | DE |
3718954 | Dec 1988 | DE |
3844505 | Jul 1990 | DE |
3903399 | Aug 1990 | DE |
4304577 | Aug 1994 | DE |
4402184 | Aug 1995 | DE |
4415570 | Nov 1995 | DE |
4444757 | Jun 1996 | DE |
29706980 | Jul 1997 | DE |
19636591 | Mar 1998 | DE |
19644355 | Apr 1998 | DE |
19652673 | Jun 1998 | DE |
19711869 | Sep 1998 | DE |
19748716 | Nov 1998 | DE |
29819391 | Feb 1999 | DE |
19801803 | Apr 1999 | DE |
19932394 | Jan 2001 | DE |
19947915 | Apr 2001 | DE |
19951594 | May 2001 | DE |
10000370 | Jul 2001 | DE |
20102029 | Aug 2001 | DE |
10219190 | Nov 2003 | DE |
10246690 | Apr 2004 | DE |
102004018524 | Nov 2005 | DE |
102004028746 | Dec 2005 | DE |
0013157 | Jul 1980 | EP |
0232963 | Aug 1987 | EP |
0313392 | Apr 1989 | EP |
0627805 | Dec 1994 | EP |
1108888 | Jun 2001 | EP |
1167754 | Jan 2002 | EP |
1289097 | Mar 2003 | EP |
1291521 | Mar 2003 | EP |
1309067 | May 2003 | EP |
1363019 | Nov 2003 | EP |
1375913 | Jan 2004 | EP |
1394406 | Mar 2004 | EP |
1394451 | Mar 2004 | EP |
1589222 | Oct 2005 | EP |
1612415 | Jan 2006 | EP |
1641102 | Mar 2006 | EP |
1677002 | Jul 2006 | EP |
1772624 | Apr 2007 | EP |
1780409 | May 2007 | EP |
1829762 | Sep 2007 | EP |
1 921 311 | May 2008 | EP |
2060786 | May 2009 | EP |
2140301 | Feb 2000 | ES |
806292 | Dec 1936 | FR |
859844 | Dec 1940 | FR |
1348765 | Jan 1964 | FR |
2401091 | Mar 1979 | FR |
2445053 | Jul 1980 | FR |
2519483 | Jul 1983 | FR |
2594272 | Aug 1987 | FR |
2760492 | Sep 1998 | FR |
2796671 | Jan 2001 | FR |
2798168 | Mar 2001 | FR |
2810374 | Dec 2001 | FR |
2882404 | Aug 2006 | FR |
191317268 | Jan 1914 | GB |
859176 | Jan 1961 | GB |
1524477 | Sep 1978 | GB |
1537729 | Jan 1979 | GB |
2041111 | Sep 1980 | GB |
2050525 | Jan 1981 | GB |
2075274 | Nov 1981 | GB |
2131630 | Jun 1984 | GB |
2144587 | Mar 1985 | GB |
2208243 | Mar 1989 | GB |
2266937 | Nov 1993 | GB |
2372783 | Sep 2002 | GB |
57059462 | Apr 1982 | JP |
3145945 | Jun 1991 | JP |
5122912 | May 1993 | JP |
6002970 | Jan 1994 | JP |
6269141 | Sep 1994 | JP |
10-070858 | Mar 1998 | JP |
11236977 | Aug 1999 | JP |
11-299197 | Oct 1999 | JP |
2000-134885 | May 2000 | JP |
2001-057750 | Feb 2001 | JP |
2003453072 | Jul 2003 | JP |
2004-153913 | May 2004 | JP |
2004-297947 | Oct 2004 | JP |
2005-006375 | Jan 2005 | JP |
2005-020906 | Jan 2005 | JP |
2005-312150 | Nov 2005 | JP |
8902534 | May 1991 | NL |
2000466 | Sep 1993 | RU |
2229621 | May 2004 | RU |
WO8402382 | Jun 1984 | WO |
WO9105953 | May 1991 | WO |
WO9212343 | Jul 1992 | WO |
WO9730504 | Aug 1997 | WO |
WO9733357 | Sep 1997 | WO |
WO9840627 | Sep 1998 | WO |
WO9930031 | Jun 1999 | WO |
WO9933165 | Jul 1999 | WO |
WO9937912 | Jul 1999 | WO |
WO9939426 | Aug 1999 | WO |
WO0001056 | Jan 2000 | WO |
WO0106121 | Jan 2001 | WO |
WO0106623 | Jan 2001 | WO |
WO0107784 | Feb 2001 | WO |
WO0121956 | Mar 2001 | WO |
WO0125631 | Apr 2001 | WO |
WO0129413 | Apr 2001 | WO |
WO0134973 | May 2001 | WO |
WO0135517 | May 2001 | WO |
WO01069754 | Sep 2001 | WO |
WO0233254 | Apr 2002 | WO |
WO02057624 | Jul 2002 | WO |
WO02083523 | Oct 2002 | WO |
WO 03036084 | May 2003 | WO |
WO03067081 | Aug 2003 | WO |
WO03076801 | Sep 2003 | WO |
WO2004017497 | Feb 2004 | WO |
WO2005103489 | Nov 2005 | WO |
WO2006013722 | Feb 2006 | WO |
WO2006032515 | Mar 2006 | WO |
WO2007063370 | Jun 2007 | WO |
WO2007110718 | Oct 2007 | WO |
WO2008052562 | May 2008 | WO |
WO2008078342 | Jul 2008 | WO |
WO2008086608 | Jul 2008 | WO |
WO2008098573 | Aug 2008 | WO |
WO2008102184 | Aug 2008 | WO |
WO2008116463 | Oct 2008 | WO |
WO2008131766 | Nov 2008 | WO |
Number | Date | Country | |
---|---|---|---|
20110084491 A1 | Apr 2011 | US |