Wind power turbine with a cooling system

Information

  • Patent Grant
  • 8319362
  • Patent Number
    8,319,362
  • Date Filed
    Wednesday, November 11, 2009
    15 years ago
  • Date Issued
    Tuesday, November 27, 2012
    12 years ago
Abstract
A wind power turbine having a pylon; a nacelle; an electric generator fitted to the nacelle to produce electric energy; a frequency converter housed inside the pylon; and a cooling system for cooling the frequency converter, and which has an open-loop circuit provided with a conduit, and at least one cooling fin thermally connected to the frequency converter and housed in the conduit.
Description
PRIORITY CLAIM

This application claims the benefit of and priority to Italian Patent Application No. MI2008A 002006, filed on Nov. 12, 2008, the entire contents of which are incorporated herein.


TECHNICAL FIELD

The present disclosure relates to a wind power turbine equipped with a cooling system.


More specifically, one embodiment of the present disclosure relates to a wind power turbine comprising a pylon; a nacelle; an electric generator fitted to the nacelle to produce electric energy; a frequency converter inside the pylon; and a cooling system for cooling the frequency converter.


BACKGROUND

Many of the component parts, such as the electric generator, frequency converter, etc., of a wind power turbine for producing electric energy generate heat that must somehow be dissipated.


In some wind turbines, certain components are cooled by a coolant circuit, as described, for example, in U.S. Pat. No. 6,520,737.


Fluid cooling, however, calls for careful maintenance of the circuit and provision of a coolant tank.


Alternatively, as described, for example, in EP Patent Application No. 1,200,733 or in PCT Patent Application No. WO 01/06121 A1, cooling is performed by a closed-loop circuit formed partly by the pylon itself, and in which an air stream is conveyed.


Alternatively, as described in PCT Patent Application No. WO 2007/110719, heat-producing component parts are cooled by fixing them directly to the wall of the pylon, relying on wind action on the pylon to cool them sufficiently.


PCT Patent Application No. WO 99/30031 discloses a cooling system for wind power turbine wherein the pylon itself defines the conduit and the chimney effect of the same is used to convey an air stream from the base to the top of the pylon and to cool those heat producing devices housed inside the pylon.


In the latter solutions, the pylon and more specifically, the outer wall of the pylon is the main heat exchange element. Even in exceptionally windy locations, however, wind action on the pylon is not always sufficient to adequately cool, directly or indirectly, component parts subject to overheating. That is, in weather conditions characterized by strong sunlight heating the pylon wall, and by relatively mild wind, the pylon fails to ensure adequate cooling of the converter.


In accordance to the arrangement disclosed in PCT Patent Application No. WO 2007/110719 and PCT Patent Application No. WO 99/30031, humid and dirty air is permitted to enter into the inner compartment where sophisticated electronic components are housed.


German Patent Application No. DE 199 47 915 A1 discloses a wind power turbine comprising a pylon having a first outer wall; a nacelle having a second outer wall; an electric generator fitted to the nacelle to produce electric energy; a heat generating apparatus housed in an apparatus space arranged at the base of the pylon; and a cooling system for cooling the heat generating apparatus. The cooling system is of the open-loop circuit type and includes a conduit, which is housed inside the pylon and the nacelle and connects an inlet port, formed in the apparatus space, to an outlet port formed in the nacelle.


The cooling conduit extends across the heat generating device and therefore introduces humid and dirty air into the heat generating device. Since the heat generating devices are often electronic power devices, such a cooling system may cause severe drawbacks to the operativeness of the wind power turbine.


Thus, it should be appreciated from the above that, in general, known cooling techniques are invariably far from satisfactory.


SUMMARY

In various embodiments, the present disclosure provides a wind power turbine featuring a cooling system designed to ensure highly effective cooling in any operating and weather condition.


Another embodiment of the present disclosure provides a wind power turbine featuring a straightforward, low-cost cooling system configured to keep the inside of the pylon, and in particular the frequency converter, free of dirt and humidity.


According to one embodiment of the present disclosure, there is provided a wind power turbine comprising a pylon having a first outer wall; a nacelle having a second outer wall; an electric generator fitted to the nacelle to produce electric energy; a frequency converter housed in an inner compartment of the wind power turbine; and a cooling system for cooling the frequency converter. The cooling system comprises:

    • (a) an open-loop circuit including at least one conduit housed inside said inner compartment and having no outlets into the inner compartment, and connecting an inlet port, formed in the first or second outer wall, to an outlet port formed in the first or second outer wall, and
    • (b) at least one cooling fin thermally connected to the frequency converter and housed inside said conduit.


According to another embodiment of the present disclosure, the cooling system is exceptionally effective and hardly affected by weather conditions, on account of airflow along the conduit flowing directly over the cooling fin. The cooling efficiency is rather high because the flow is concentrated inside the conduit without dispersion in the inner compartment. Moreover, any dirt is confined inside the cooling conduit.


In various embodiments, the frequency converter comprises at least one electronic power switch, and in particular an insulated-gate bipolar transistor, and is housed in at least an electric cabinet comprising a wall fitted on one side with the electronic power switch, and on the other side with the cooling fin.


In this way the heat transfer is assured and the efficiency of the power converter is very high. At the same time the power switch is protected from any kind of pollution.


Additional features and advantages are described in, and will be apparent from, the following Detailed Description and the figures.





BRIEF DESCRIPTION OF THE DRAWINGS

A non-limiting embodiment of the present disclosure will be described by way of example with reference to the accompanying drawing, in which:



FIG. 1 shows a partly sectioned perspective side view, with parts removed for clarity, of a wind power turbine in accordance with one embodiment of the present disclosure;



FIG. 2 shows a larger-scale lateral section of a detail of the FIG. 1 wind power turbine;



FIG. 3 shows a larger-scale section, taken substantially along line III-III and with parts removed for clarity, of a detail in FIG. 2; and



FIGS. 4, 5, 6 and 7 show sections of respective variations of the FIG. 3 detail.





DETAILED DESCRIPTION

Referring now to the example embodiments of the present disclosure illustrated in FIGS. 1 to 7, number 1 in FIG. 1 indicates as a whole a wind power turbine comprising a pylon 2 extending along a vertical axis A1; a nacelle 3 fitted to the top end of pylon 2 and rotating with respect to pylon 2 about axis A1; a hub 4 mounted to rotate with respect to nacelle 3 about an axis of rotation A2 crosswise to axis A1; and three blades 5, only two of which are shown in FIG. 1.


Pylon 2 is substantially defined by a hollow cylinder housing stairs and/or elevators (not shown in the drawings).


Pylon 2 is normally anchored to the ground by a foundation (not shown in the drawings), and projects vertically from a supporting surface P.


Wind power turbine 1 comprises a synchronous electric generator 6 fitted to nacelle 3; and a frequency converter 7, which, in the example shown, is housed inside pylon 2 and comprises electronic power switches 8, in particular, insulated-gate bipolar transistors, commonly known as IGBTs.


Frequency converter 7 provides for converting variable-frequency electric energy to constant-frequency, in particular mains frequency, energy.


Nacelle 3 comprises a hollow body fitted to the top end of pylon 2 to rotate about axis A1, and supports electric generator 6.


Wind power turbine 1 comprises a cooling system 9 housed inside pylon 2 at, and for cooling, frequency converter 7.


Pylon 2 and nacelle 3, in fact, define an inner compartment, in which, more generally speaking, frequency converter 7 may be housed at either pylon 2 or nacelle 3.


With reference to FIG. 2, pylon 2 comprises an outer wall 10; and a structure 11 housed inwards of and spaced apart from wall 10. Structure 11 supports two electric cabinets 12, which house frequency converter 7 and are raised off supporting surface P (FIG. 1), and each electric cabinet 12 is separated from wall 10 of pylon 2 by a gap.


In the FIG. 2 example, each electric cabinet 12 comprises a wall 13 fitted with electronic power switches 8; wall 13 has openings 14, each housing a respective electronic power switch 8; and, as shown more clearly in FIG. 3, opening 14 is the same size as electronic power switch 8, which fits snugly inside respective opening 14.


With reference to FIG. 2, cooling system 9 comprises an open-loop circuit 15 for drawing in air from outside wind power turbine 1; feeding the air along a given path, extending along the inner compartment of wind power turbine 1, to cool frequency converter 7; and expelling the air from wind power turbine 1. Circuit 15 comprises two conduits 16 connecting an inlet port 17 and an outlet port 18, both formed in wall 10; and a number of cooling fins 19 housed inside conduits 16, directly contacting electronic power switches 8. Inlet port 17 is located below frequency converter 7 and electric cabinets 12, and outlet port 18 is located above frequency converter 7 and electric cabinets 12.


Each conduit 16 extends inside the inner compartment, but has no outlets or openings into the inner compartment, and prevents the cooling air from circulating freely inside the inner compartment. Each conduit 16, in fact, serves to guide the airflow over cooling fins 19.


In the example shown, each conduit 16 is tubular, and, at frequency converter 7, is defined partly by wall 13 of a respective electric cabinet 12.


Cooling system 9 also comprises a number of powered fans 20, each housed at least partly inside a respective conduit 16 to feed air from inlet port 17 to outlet port 18 in the direction indicated by the arrows in FIG. 2, and over cooling fins 19. The fans are preferably variable-speed, so as to adjust airflow also as a function of air temperature.


In the FIG. 4 variation, wall 13 has no openings, and each electronic power switch 8 and corresponding cooling fin 19 are fixed (such as being glued), in line with each other to opposite faces of wall 13. Accordingly, wall 13 is made of good heat-conducting material to transfer heat from electronic power switch 8 to cooling fin 19.


In the FIG. 5 variation, wall 13 has an opening 14 at each electronic power switch 8, which comprises a flange 21 fixed to wall 13 by fasteners, such as screws 22; and cooling fin 19 is fixed (such as being glued), directly to electronic power switch 8.


In the FIG. 6 variation, wall 13 has an opening 14 at each electronic power switch 8, and comprises a tubular flange 23 fixed to electronic power switch 8 by fasteners, such as screws 24; and cooling fin 19 is fixed (such as being glued), directly to electronic power switch 8.


In the FIG. 7 variation, wall 13 has a hole 25, and electronic power switch 8 is fitted to a heat pipe 26 extending through hole 25 and fitted to a group of cooling fins 27 on the other side of wall 13.


With reference to FIG. 1, as stated, in an alternative embodiment of the present disclosure, frequency converter 7 and respective cooling system 9 are housed inside the inner compartment at nacelle 3, which has an outer wall 28, in which an inlet port 29 and an outlet port 30 (shown by the dash lines) are formed.


In this embodiment, frequency converter 7 and respective cooling system 9 are identical to those housed inside pylon 2, except possibly for dimensional variations.


The present disclosure also includes other variations, not shown, such as each conduit comprising a respective inlet port and a respective outlet port.


Cooling system 9 according to one embodiment of the present disclosure provides for highly effective cooling of electronic power switches 8, regardless of weather conditions, as well as for keeping the inner compartment free of dirt.


It should be understood that various changes and modifications to the presently preferred embodiments described herein will be apparent to those skilled in the art. Such changes and modifications can be made without departing from the spirit and scope of the present subject matter and without diminishing its intended advantages. It is therefore intended that such changes and modifications be covered by the appended claims.

Claims
  • 1. A wind power turbine comprising: a pylon having a first outer wall;a nacelle having a second outer wall;an electric generator fitted to the nacelle and configured to produce electric energy;a frequency converter including at least one electronic power switch, said frequency converter housed inside at least one electric cabinet in an inner compartment of the wind power turbine, said at least one electric cabinet including a wall fitted, on one side, with said at least one electronic power switch; anda cooling system configured to cool the frequency converter, said cooling system including: an open-loop circuit including at least one conduit housed inside said inner compartment and having no outlets into said inner compartment, said at least one conduit connecting an inlet port, formed in the first or second outer wall, to an outlet port formed in the first or second outer wall; andat least one cooling fin thermally connected to the frequency converter and housed inside said conduit, wherein the wall of the at least one electric cabinet is fitted, on another side, with said at least one cooling fin.
  • 2. The wind power turbine of claim 1, wherein the at least one electronic power switch is an insulated-gate bipolar transistor.
  • 3. The wind power turbine of claim 1, wherein the pylon projects vertically from a supporting surface and said at least one electric cabinet is arranged in the pylon in a raised position with respect to the supporting surface.
  • 4. The wind power turbine of claim 1, wherein the conduit is formed partly by said wall of the at least one electric cabinet.
  • 5. The wind power turbine of claim 1, wherein said at least one cooling fin contacts the at least one electronic power switch directly through an opening in said wall of the at least one electric cabinet.
  • 6. The wind power turbine of claim 1, wherein said at least one cooling fin is connected thermally to the at least one electronic power switch by said wall of the at least one electric cabinet.
  • 7. The wind power turbine of claim 1, wherein said at least one cooling fin is connected thermally to the at least one electronic power switch by a heat pipe fitted through a hole in said wall.
  • 8. The wind power turbine of claim 1, wherein the cooling system includes a fan housed at least partly in the conduit.
  • 9. The wind power turbine of claim 8, wherein the fan is a variable-speed fan configured to adjust airflow.
  • 10. The wind power turbine of claim 9, wherein the fan is configured to adjust airflow as a function of air temperature.
  • 11. The wind power turbine of claim 1, wherein said frequency converter is spaced apart from the first or second outer wall.
  • 12. The wind power turbine of claim 1, wherein said at least one conduit connects the frequency converter to the first or second outer wall.
  • 13. A wind, power turbine frequency converter cooling system comprising: an open-loop circuit including at least one conduit configured to be housed inside an inner compartment of a wind power turbine and having no outlets into said inner compartment, said at least one conduit configured to connect an inlet port, formed in a first outer wall of a pylon of the wind power turbine or a second outer wall of a nacelle of the wind power turbine, to an outlet port formed in the first or second outer wall; andat least one cooling fin thermally connected to a frequency converter including at least one electronic power switch, said at least one cooling fin configured to be housed inside said conduit and said frequency converter configured to be housed inside at least one electric cabinet in the inner compartment, said at least one electric cabinet including a wall fitted, on one side, with said at least one electronic power switch and on another side, with said at least one cooling fin.
Priority Claims (1)
Number Date Country Kind
MI08A2006 Nov 2008 IT national
US Referenced Citations (313)
Number Name Date Kind
1894357 Manikowske et al. Jan 1933 A
1948854 Heath Feb 1934 A
1979813 Reis Nov 1934 A
2006172 Klappauf Jun 1935 A
2040218 Soderberg May 1936 A
2177801 Erren Oct 1939 A
2469734 Ledwith May 1949 A
2496897 Strickland Feb 1950 A
2655611 Sherman Oct 1953 A
2739253 Plumb Mar 1956 A
2806160 Brainard Sep 1957 A
2842214 Prewitt Jul 1958 A
2903610 Bessiere Sep 1959 A
3004782 Meermans Oct 1961 A
3072813 Reijnst et al. Jan 1963 A
3083311 Krasnow Mar 1963 A
3131942 Ertaud May 1964 A
3168686 King et al. Feb 1965 A
3221195 Hoffmann Nov 1965 A
3363910 Toronchuk Jan 1968 A
3364523 Schippers Jan 1968 A
3392910 Tanzberger Jul 1968 A
3468548 Webb Sep 1969 A
3700247 Butler et al. Oct 1972 A
3724861 Lesiecki Apr 1973 A
3746349 Smale et al. Jul 1973 A
3748089 Boyer et al. Jul 1973 A
3789252 Abegg Jan 1974 A
3841643 McLean Oct 1974 A
3860843 Kawasaki et al. Jan 1975 A
3942026 Carter Mar 1976 A
3963247 Nommensen Jun 1976 A
3968969 Mayer et al. Jul 1976 A
4022479 Orlowski May 1977 A
4061926 Peed Dec 1977 A
4087698 Myers May 1978 A
4273343 Visser Jun 1981 A
4289970 Deibert Sep 1981 A
4291235 Bergey, Jr. et al. Sep 1981 A
4292532 Leroux Sep 1981 A
4336649 Glaser Jun 1982 A
4339874 Mc'Carty et al. Jul 1982 A
4348604 Thode Sep 1982 A
4350897 Benoit Sep 1982 A
4354126 Yates Oct 1982 A
4368895 Okamoto et al. Jan 1983 A
4398773 Boden et al. Aug 1983 A
4452046 Valentin Jun 1984 A
4482831 Notaras et al. Nov 1984 A
4490093 Chertok et al. Dec 1984 A
4517483 Hucker et al. May 1985 A
4517484 Dacier May 1985 A
4521026 Eide Jun 1985 A
4585950 Lund Apr 1986 A
4613779 Meyer Sep 1986 A
4638200 Le Corre et al. Jan 1987 A
4648801 Wilson Mar 1987 A
4694654 Kawamura Sep 1987 A
4700096 Epars Oct 1987 A
4714852 Kawada et al. Dec 1987 A
4720640 Anderson et al. Jan 1988 A
4722661 Mizuno Feb 1988 A
4724348 Stokes Feb 1988 A
4761590 Kaszman Aug 1988 A
4792712 Stokes Dec 1988 A
4801244 Stahl Jan 1989 A
4866321 Blanchard et al. Sep 1989 A
4900965 Fisher Feb 1990 A
4906060 Claude Mar 1990 A
4973868 Wust Nov 1990 A
4976587 Johnston et al. Dec 1990 A
5004944 Fisher Apr 1991 A
5063318 Anderson Nov 1991 A
5090711 Becker Feb 1992 A
5091668 Cuenot et al. Feb 1992 A
5177388 Hotta et al. Jan 1993 A
5191255 Kloosterhouse et al. Mar 1993 A
5275139 Rosenquist Jan 1994 A
5280209 Leupold et al. Jan 1994 A
5281094 McCarty et al. Jan 1994 A
5298827 Sugiyama Mar 1994 A
5302876 Iwamatsu et al. Apr 1994 A
5311092 Fisher May 1994 A
5315159 Gribnau May 1994 A
5331238 Johnsen Jul 1994 A
5410997 Rosenquist May 1995 A
5419683 Peace May 1995 A
5456579 Olson Oct 1995 A
5483116 Kusase et al. Jan 1996 A
5506453 McCombs Apr 1996 A
5579800 Walker Dec 1996 A
5609184 Apel et al. Mar 1997 A
5663600 Baek et al. Sep 1997 A
5670838 Everton Sep 1997 A
5696419 Rakestraw et al. Dec 1997 A
5704567 Maglieri Jan 1998 A
5746576 Bayly May 1998 A
5777952 Nishimura et al. Jul 1998 A
5783894 Wither Jul 1998 A
5793144 Kusase et al. Aug 1998 A
5798632 Muljadi Aug 1998 A
5801470 Johnson et al. Sep 1998 A
5811908 Iwata et al. Sep 1998 A
5814914 Caamaño Sep 1998 A
5844333 Sheerin Dec 1998 A
5844341 Spooner et al. Dec 1998 A
5857762 Schwaller Jan 1999 A
5886441 Uchida et al. Mar 1999 A
5889346 Uchida et al. Mar 1999 A
5894183 Borchert Apr 1999 A
5925964 Kusase et al. Jul 1999 A
5952755 Lubas Sep 1999 A
5961124 Muller Oct 1999 A
5973435 Irie et al. Oct 1999 A
5986374 Kawakami Nov 1999 A
5986378 Caamaño Nov 1999 A
6013968 Lechner et al. Jan 2000 A
6037692 Miekka et al. Mar 2000 A
6064123 Gislason May 2000 A
6067227 Katsui et al. May 2000 A
6089536 Watanabe et al. Jul 2000 A
6093984 Shiga et al. Jul 2000 A
6127739 Appa Oct 2000 A
6172429 Russell Jan 2001 B1
6177746 Tupper et al. Jan 2001 B1
6193211 Watanabe et al. Feb 2001 B1
6194799 Miekka et al. Feb 2001 B1
6215199 Lysenko et al. Apr 2001 B1
6232673 Schoo et al. May 2001 B1
6278197 Appa Aug 2001 B1
6285090 Brutsaert et al. Sep 2001 B1
6326711 Yamaguchi et al. Dec 2001 B1
6365994 Watanabe et al. Apr 2002 B1
6373160 Schrödl Apr 2002 B1
6376956 Hosoya Apr 2002 B1
6378839 Watanabe et al. Apr 2002 B2
6384504 Ehrhart et al. May 2002 B1
6417578 Chapman et al. Jul 2002 B1
6428011 Oskouei Aug 2002 B1
6452287 Looker Sep 2002 B1
6452301 Van Dine et al. Sep 2002 B1
6455976 Nakano Sep 2002 B1
6472784 Miekka et al. Oct 2002 B2
6474653 Hintenlang et al. Nov 2002 B1
6476513 Gueorguiev Nov 2002 B1
6483199 Umemoto et al. Nov 2002 B2
6492743 Appa Dec 2002 B1
6492754 Weiglhofer et al. Dec 2002 B1
6499532 Williams Dec 2002 B1
6504260 Debleser Jan 2003 B1
6515390 Lopatinsky et al. Feb 2003 B1
6520737 Fischer et al. Feb 2003 B1
6548932 Weiglhofer et al. Apr 2003 B1
6590312 Seguchi et al. Jul 2003 B1
6603232 Van Dine et al. Aug 2003 B2
6617747 Petersen Sep 2003 B1
6629358 Setiabudi et al. Oct 2003 B2
6664692 Kristoffersen Dec 2003 B1
6676122 Wobben Jan 2004 B1
6683397 Gauthier et al. Jan 2004 B2
6700260 Hsu et al. Mar 2004 B2
6700288 Smith Mar 2004 B2
6707224 Petersen Mar 2004 B1
6720688 Schiller Apr 2004 B1
6727624 Morita et al. Apr 2004 B2
6746217 Kim et al. Jun 2004 B2
6759758 Martinez Jul 2004 B2
6762525 Maslov et al. Jul 2004 B1
6774504 Lagerwey Aug 2004 B1
6781276 Stiesdal et al. Aug 2004 B1
6784564 Wobben Aug 2004 B1
6794781 Razzell et al. Sep 2004 B2
6828710 Gabrys Dec 2004 B1
6856042 Kubota Feb 2005 B1
6879075 Calfo et al. Apr 2005 B2
6888262 Blakemore May 2005 B2
6891299 Coupart et al. May 2005 B2
6903466 Mercier et al. Jun 2005 B1
6903475 Ortt et al. Jun 2005 B2
6906444 Hattori et al. Jun 2005 B2
6911741 Petteersen et al. Jun 2005 B2
6921243 Canini et al. Jul 2005 B2
6931834 Jones Aug 2005 B2
6933645 Watson Aug 2005 B1
6933646 Kinoshita Aug 2005 B2
6942454 Ohlmann Sep 2005 B2
6945747 Miller Sep 2005 B1
6949860 Hama et al. Sep 2005 B2
6951443 Blakemore Oct 2005 B1
6972498 Jamieson et al. Dec 2005 B2
6983529 Ortt et al. Jan 2006 B2
6984908 Rinholm et al. Jan 2006 B2
6987342 Hans Jan 2006 B2
6998729 Wobben Feb 2006 B1
7004724 Pierce et al. Feb 2006 B2
7008172 Selsam Mar 2006 B2
7008348 LaBath Mar 2006 B2
7016006 Song Mar 2006 B2
7021905 Torrey et al. Apr 2006 B2
7028386 Kato et al. Apr 2006 B2
7033139 Wobben Apr 2006 B2
7038343 Agnes et al. May 2006 B2
7042109 Gabrys May 2006 B2
7057305 Kruger-Gotzmann et al. Jun 2006 B2
7075192 Bywaters et al. Jul 2006 B2
7081696 Ritchey Jul 2006 B2
7088024 Agnes et al. Aug 2006 B2
7091642 Agnes et al. Aug 2006 B2
7095128 Canini et al. Aug 2006 B2
7098552 McCoin Aug 2006 B2
7109600 Bywaters et al. Sep 2006 B1
7111668 Rürup Sep 2006 B2
7116006 McCoin Oct 2006 B2
7119469 Ortt et al. Oct 2006 B2
7154191 Jansen et al. Dec 2006 B2
7161259 Lagerwey Jan 2007 B2
7161260 Krügen-Gotzmann et al. Jan 2007 B2
7166942 Yokota Jan 2007 B2
7168248 Sakamoto et al. Jan 2007 B2
7168251 Janssen Jan 2007 B1
7179056 Siegfriedsen Feb 2007 B2
7180204 Grant et al. Feb 2007 B2
7183665 Bywaters et al. Feb 2007 B2
7196446 Hans Mar 2007 B2
7205678 Casazza et al. Apr 2007 B2
7217091 LeMieux May 2007 B2
7259472 Miyake et al. Aug 2007 B2
7281501 Leufen et al. Oct 2007 B2
7285890 Jones et al. Oct 2007 B2
7323792 Sohn Jan 2008 B2
7345376 Costin Mar 2008 B2
7358637 Tapper Apr 2008 B2
7377163 Miyagawa May 2008 B2
7385305 Casazza et al. Jun 2008 B2
7385306 Casazza et al. Jun 2008 B2
7392988 Moldt et al. Jul 2008 B2
7427814 Bagepalli et al. Sep 2008 B2
7431567 Bevington et al. Oct 2008 B1
7443066 Salamah et al. Oct 2008 B2
7458261 Miyagawa Dec 2008 B2
7482720 Gordon et al. Jan 2009 B2
7548008 Jansen et al. Jun 2009 B2
7550863 Versteegh Jun 2009 B2
7687932 Casazza et al. Mar 2010 B2
8047774 Bagepalli Nov 2011 B2
8058742 Erdman et al. Nov 2011 B2
20020047418 Seguchi et al. Apr 2002 A1
20020047425 Coupart et al. Apr 2002 A1
20020056822 Watanabe et al. May 2002 A1
20020063485 Lee et al. May 2002 A1
20020089251 Tajima et al. Jul 2002 A1
20020148453 Watanabe et al. Oct 2002 A1
20030011266 Morita et al. Jan 2003 A1
20030102677 Becker et al. Jun 2003 A1
20030137149 Northrup et al. Jul 2003 A1
20030230899 Martinez Dec 2003 A1
20040086373 Page, Jr. May 2004 A1
20040094965 Kirkegaard et al. May 2004 A1
20040119292 Datta et al. Jun 2004 A1
20040150283 Calfo et al. Aug 2004 A1
20040151575 Pierce et al. Aug 2004 A1
20040151577 Pierce et al. Aug 2004 A1
20040189136 Kolomeitsev et al. Sep 2004 A1
20050002783 Hiel et al. Jan 2005 A1
20050002787 Wobben Jan 2005 A1
20050082839 McCoin Apr 2005 A1
20050230979 Bywaters et al. Oct 2005 A1
20050280264 Nagy Dec 2005 A1
20060000269 LeMieux et al. Jan 2006 A1
20060001269 Jansen et al. Jan 2006 A1
20060006658 McCoin Jan 2006 A1
20060012182 McCoin Jan 2006 A1
20060028025 Kikuchi et al. Feb 2006 A1
20060066110 Jansen et al. Mar 2006 A1
20060071575 Jansen et al. Apr 2006 A1
20060091735 Song et al. May 2006 A1
20060125243 Miller Jun 2006 A1
20060131985 Qu et al. Jun 2006 A1
20060152012 Wiegel et al. Jul 2006 A1
20060152015 Bywaters et al. Jul 2006 A1
20060152016 Bywaters et al. Jul 2006 A1
20070020109 Takahashi et al. Jan 2007 A1
20070116567 Luetze May 2007 A1
20070187954 Struve et al. Aug 2007 A1
20070187956 Wobben Aug 2007 A1
20070222223 Bagepalli et al. Sep 2007 A1
20070222226 Casazza et al. Sep 2007 A1
20070222227 Casazza et al. Sep 2007 A1
20080003105 Nies Jan 2008 A1
20080025847 Teipen Jan 2008 A1
20080050234 Ingersoll et al. Feb 2008 A1
20080107526 Wobben May 2008 A1
20080118342 Seidel et al. May 2008 A1
20080197636 Tilscher et al. Aug 2008 A1
20080197638 Wobben Aug 2008 A1
20080246224 Pabst et al. Oct 2008 A1
20080290662 Matesanz Gil et al. Nov 2008 A1
20080290664 Kruger Nov 2008 A1
20080303281 Krueger Dec 2008 A1
20080309189 Pabst et al. Dec 2008 A1
20080315594 Casazza et al. Dec 2008 A1
20090045628 Erdman et al. Feb 2009 A1
20090060748 Landa et al. Mar 2009 A1
20090094981 Eggleston Apr 2009 A1
20090096309 Pabst et al. Apr 2009 A1
20090302702 Pabst et al. Dec 2009 A1
20100019502 Pabst et al. Jan 2010 A1
20100026010 Pabst Feb 2010 A1
20100123318 Casazza et al. May 2010 A1
20110221204 Kim et al. Sep 2011 A1
20110272949 Matsuo et al. Nov 2011 A1
20110304149 Pasteuning et al. Dec 2011 A1
20120001438 Matsuo et al. Jan 2012 A1
Foreign Referenced Citations (139)
Number Date Country
2404939 Apr 2004 CA
2518742 Sep 2004 CA
1554867 Dec 2004 CN
1130913 Jun 1962 DE
2164135 Jul 1973 DE
2322458 Nov 1974 DE
2506160 Aug 1976 DE
2922885 Dec 1980 DE
3638129 May 1988 DE
3718954 Dec 1988 DE
3844505 Jul 1990 DE
3903399 Aug 1990 DE
4304577 Aug 1994 DE
4402184 Aug 1995 DE
4415570 Nov 1995 DE
4444757 Jun 1996 DE
29706980 Jul 1997 DE
19636591 Mar 1998 DE
19644355 Apr 1998 DE
19652673 Jun 1998 DE
19711869 Sep 1998 DE
19748716 Nov 1998 DE
29819391 Feb 1999 DE
19801803 Apr 1999 DE
19932394 Jan 2001 DE
19947915 Apr 2001 DE
19951594 May 2001 DE
10000370 Jul 2001 DE
20102029 Aug 2001 DE
10219190 Nov 2003 DE
10246690 Apr 2004 DE
102004018524 Nov 2005 DE
102004028746 Dec 2005 DE
0013157 Jul 1980 EP
0232963 Aug 1987 EP
0313392 Apr 1989 EP
0627805 Dec 1994 EP
1108888 Jun 2001 EP
1167754 Jan 2002 EP
1289097 Mar 2003 EP
1291521 Mar 2003 EP
1309067 May 2003 EP
1363019 Nov 2003 EP
1375913 Jan 2004 EP
1394406 Mar 2004 EP
1394451 Mar 2004 EP
1589222 Oct 2005 EP
1612415 Jan 2006 EP
1641102 Mar 2006 EP
1677002 Jul 2006 EP
1772624 Apr 2007 EP
1780409 May 2007 EP
1829762 Sep 2007 EP
1921311 May 2008 EP
2060786 May 2009 EP
2187047 May 2010 EP
2140301 Feb 2000 ES
806292 Dec 1936 FR
859844 Dec 1940 FR
1348765 Jan 1964 FR
2401091 Mar 1979 FR
2445053 Jul 1980 FR
2519483 Jul 1983 FR
2594272 Aug 1987 FR
2760492 Sep 1998 FR
2796671 Jan 2001 FR
2798168 Mar 2001 FR
2810374 Dec 2001 FR
2882404 Aug 2006 FR
191317268 Jan 1914 GB
859176 Jan 1961 GB
1524477 Sep 1978 GB
1537729 Jan 1979 GB
2041111 Sep 1980 GB
2050525 Jan 1981 GB
2075274 Nov 1981 GB
2131630 Jun 1984 GB
2144587 Mar 1985 GB
2208243 Mar 1989 GB
2266937 Nov 1993 GB
2372783 Sep 2002 GB
57059462 Apr 1982 JP
3145945 Jun 1991 JP
5122912 May 1993 JP
6002970 Jan 1994 JP
6269141 Sep 1994 JP
10-070858 Mar 1998 JP
11236977 Aug 1999 JP
11-299197 Oct 1999 JP
2000-134885 May 2000 JP
2001-057750 Feb 2001 JP
2003453072 Jul 2003 JP
2004-153913 May 2004 JP
2004-297947 Oct 2004 JP
2005-006375 Jan 2005 JP
2005-020906 Jan 2005 JP
2005-312150 Nov 2005 JP
8902534 May 1991 NL
2000466 Sep 1993 RU
2229621 May 2004 RU
WO8402382 Jun 1984 WO
WO9105953 May 1991 WO
WO9212343 Jul 1992 WO
WO9730504 Aug 1997 WO
WO9733357 Sep 1997 WO
WO9840627 Sep 1998 WO
WO9930031 Jun 1999 WO
WO9933165 Jul 1999 WO
WO9937912 Jul 1999 WO
WO9939426 Aug 1999 WO
WO0001056 Jan 2000 WO
WO0106121 Jan 2001 WO
WO0106623 Jan 2001 WO
WO0107784 Feb 2001 WO
WO0121956 Mar 2001 WO
WO0125631 Apr 2001 WO
WO0129413 Apr 2001 WO
WO0134973 May 2001 WO
WO0135517 May 2001 WO
WO0169754 Sep 2001 WO
WO0233254 Apr 2002 WO
WO02057624 Jul 2002 WO
WO02083523 Oct 2002 WO
WO03036084 May 2003 WO
WO03067081 Aug 2003 WO
WO03076801 Sep 2003 WO
WO2004017497 Feb 2004 WO
WO2005103489 Nov 2005 WO
WO2006013722 Feb 2006 WO
WO2006032515 Mar 2006 WO
WO2007063370 Jun 2007 WO
WO2007110718 Oct 2007 WO
WO2008052562 May 2008 WO
WO2008078342 Jul 2008 WO
WO2008086608 Jul 2008 WO
WO2008098573 Aug 2008 WO
WO2008102184 Aug 2008 WO
WO2008116463 Oct 2008 WO
WO2008131766 Nov 2008 WO
Related Publications (1)
Number Date Country
20100117362 A1 May 2010 US