1. Field of the Invention
The present invention relates to wind powered generators, and more particularly to stationary cylindrical towers with an outer system of airfoil baffles that directs and throttles wind from any compass direction into an inner impeller rotating on a vertical axle and bearings, and further relating to electrical alternators with magnets mounted on flywheel rotors stacked between stator disks of three-phase windings.
2. Description of the Prior Art
Renewable energy sources like wind and solar systems are developing into more significant and important parts of the national power grid. Solar systems obviously need good sunlight to operate at maximum efficiency, but wind powered generators only require wind and can operate day or night, overcast or sunny. Wind power systems are therefore an important and useful complement to solar energy systems.
Conventional wind generation systems, like those deployed in the thousands at Altamont Pass in the hills east of Livermore, Calif., depend on huge three bladed propellers that must be turned into the wind. But if the wind blows too hard, these propellers need to have their blades feathered so the moving parts don't spin too fast and destroy themselves. The generating machinery and electrical systems also need to be mounted 100-200 feet up in the air behind the axis of the propeller, and the whole must be able to turn into the wind. In spite of all these shortcomings, these conventional systems still earn their operators an income and the national power grid is supplied with substantial amounts of renewable emery and green energy credits.
What is needed is a wind powered generator that is more robust, more efficient, easier to operate, less costly to construct, simpler to maintain, and that nevertheless can generate serious amounts of electrical power.
Briefly, a wind powered generator embodiment of the present invention comprises a stationary tower to capture wind from any compass direction, an impeller inside the tower that is spun by wind entering through airfoil baffles on the outer walls of the tower, and a three-phase alternator that sandwiches and spins flywheels bejeweled with ceramic magnets in a stack between stator disks of pancaked windings.
These and other objects and advantages of the present invention will no doubt become obvious to those of ordinary skill in the art after having read the following detailed description of the preferred embodiments which are illustrated in the various drawing figures.
While the invention is amenable to various modifications and alternative forms, specifics thereof have been shown by way of example in the drawings and will be described in detail. It should be understood, however, that the intention is not to limit the invention to the particular embodiments described. On the contrary, the intention is to cover all modifications, equivalents, and alternatives falling within the spirit and scope of the invention as defined by the appended claims.
The AC output of the alternator 106 is converted to direct current (DC) by full-wave bridge rectifiers 112. The DC output will be on the order of hundreds of volts. High voltage AC and DC have power transmission advantages over low voltage systems because the currents are so much reduced for the same power levels and the same transmission line resistance.
The DC output of the full-wave bridge rectifiers 112 can be used to charge a battery bank 114. An inverter 116 converts the DC into utility grade 50-60 Hz AC at standard line or transmission grid voltages. For example, 220/440 VAC and 12K-16K VAC.
The stationary vertical airfoil baffle shroud 110 turns a wind 120 as it enters from any compass direction into a spinning vortex that can drive inner paddlewheel impeller 108. Spent wind is exhausted out the top along the central axis. The stationary vertical airfoil baffle shroud 110 also provides automatic throttling that will limit how much wind 120 can be accepted.
Each stator 508, 510, and 512 includes field windings that cut through magnetic lines of force from individual magnets embedded in the two magnet flywheels 504 and 506 as they spin by in close proximity. Each stator 508, 510, and 512 has a top and bottom surface that can be independently fitted with three-phase field windings. The top and bottom surfaces are populated with field windings if the final assembly will have a match magnetic flywheel on that side. Otherwise it is left empty. The full-wave rectifiers, e.g., 112 of
The pair of inner and outer concentric aluminum ribbons 610 and 614 are sheet metal configured and disposed in each flywheel such that corresponding said ceramic magnets that bejewel said outer perimeter surfaces of each the magnetic flywheel are curbed in a single file lane between.
There is a matching permanent magnet embedded in the corresponding magnetic flywheel for each A-B-C set of pickup coils. This is such that each pickup coil will simultaneously experience the same magnetic rises and falls as its neighbors in the same phase A, B, or C, and the pickup coils' induced voltages will each peak, fall, and reverse in unison. In the example of
A complete series connection of phase-A pickup coils is represented by an A-phase winding 710 in
Although the present invention has been described in terms of the presently preferred embodiments, it is to be understood that the disclosure is not to be interpreted as limiting. Various alterations and modifications will no doubt become apparent to those skilled in the art after having read the above disclosure. Accordingly, it is intended that the appended claims be interpreted as covering all alterations and modifications as fall within the “true” spirit and scope of the invention.
This Application is a Continuation-In-Part of U.S. patent application Ser. No. 12/218,774, filed Jul. 18, 2008, and titled, VERTICAL SHAFT, HORIZONTALLY DRIVEN, SHROUDED WIND/ELECTRIC SYSTEM, by the Present Inventor, Barton A. Buhtz. Such is incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
Parent | 12218774 | Jul 2008 | US |
Child | 12709456 | US |