The present invention relates to umbrellas and more particularly, relates to an umbrella that is constructed to be resistant to inversion from the wind.
As is well known, an umbrella is a device that protects the user from the elements and in particular from liquid and frozen precipitation or even the sun, etc. A traditional umbrella has the following parts: a pole, a canopy, ribs, a runner, springs and a ferrule. A pole is the metal or wooden shaft that runs between the umbrella's handle at the bottom (or the base stand in the case of a patio model) and the canopy at the top. The canopy is the fabric part of the umbrella that catches the rain, the wind and the sun. The ribs are what give an umbrella its structure and shape. Outer ribs hold up the canopy and inner ribs (sometimes called stretchers) act as supports and connect the outer ribs to the umbrella pole. A runner slides up and down the pole while connected to the ribs/stretchers, and is responsible for the opening and closing of the canopy. Many umbrella designs include a top spring to hold the runner up when the canopy is open, a bottom spring to hold the runner down when the canopy is closed, and sometimes a center ball spring to extend the pole length in telescopic models. Strictly ornamental, the finial (also called the ferrule) is found on the very top of the umbrella, above the canopy.
Umbrella ribs function in a folding construction supporting the umbrella canopy fabric. Under normal operating conditions, the forces acting on the umbrella canopy fabric increase toward peak values when the canopy becomes fully deployed and when wind gusts tend to overturn the canopy. These forces are transmitted from the canopy to the canopy ribs, and can act on the ribs in opposite directions depending on the direction of the wind. The ribs thus have to be strong enough to withstand forces which can act on them from anyone of the two main opposite directions.
In addition to their strength requirements, the shape of the umbrella ribs should change between a substantially straight contour when the umbrella is folded and a curved one, when the canopy if fully deployed. The straight design is aimed to allow the folded fibs to lay parallel to the shaft of the umbrella when the umbrella is folded and the curved design provides for the typical mushroom-like shape (also called bell shaped).
A wind resistant umbrella, in accordance with one embodiment of the present invention, includes a shaft and a plurality of ribs extending radially outward from the shaft. Each rib has a free end portion. The umbrella also includes a lower canopy secured in covering relation on the plurality of ribs. The lower canopy has at least one vent hole formed therein. The umbrella also has an upper canopy positioned over the lower canopy and in covering relation to the at least one vent hole.
The umbrella also includes elastic fasteners having a first end attached to the upper canopy and a second end attached to the lower canopy to permit the upper canopy to elastically separate from the lower canopy while also covering the at least one vent hole. A plurality of flexible connectors are secured along a peripheral edge of the lower canopy with a first portion of the connector lying along a first face of the lower canopy. Each connector wraps around the lower canopy such that a second portion of the flexible connector lies along a second face of the lower canopy. The first portion of the flexible connector is securely attached to the second end of the elastic fastener and to the lower canopy. The second portion of the flexible connector defines a pocket that receives the free end portion of one respective rib, thereby releasably coupling the rib to the lower canopy.
The flexible connector can be formed of rubber or a similar material and can be attached to the lower canopy using stitching. The second portion includes an opening defining an entrance to the pocket. The pocket is defined between an underside of the second portion of the flexible connector and the lower canopy.
Stitching can extend through the folded over flexible connector, the captured elastic fastener, and the lower canopy, thereby securely fixing the elastic fastener to the lower canopy and providing the pocket for the free end of the rib.
As discussed herein, the present invention is directed to improvement with respect to a number of components of an umbrella including but not limited to a canopy and a rib assembly. As discussed herein, the features of the present invention can be implemented with both a manual type umbrella and an automatic type umbrella. In addition, the other features can be implemented with other types of umbrellas. Accordingly, the following discussion and figures describe exemplary embodiments that implement the teachings of the present invention.
As mentioned above, one of the main components of an umbrella is a runner 150. The runner 150 is the part of the umbrella that opens and closes the umbrella 100, with the runner 150 moving along the shaft 110. The runner 150 is located between the coupling member 105 and the cap 120 and surrounds the shaft 110.
The umbrella 100 includes a plurality of ribs (rib assemblies) 200 that are coupled to both a top notch (stationary hub) 119 (
It will be understood that any number of different ribs (rib assemblies) and strut assemblies can be used in the umbrella 100 of the present invention and the ones illustrated herein are merely exemplary and not limiting of the present invention. One exemplary rib and strut assembly is discussed below with reference to
Wind Resistance Construction
In accordance with one aspect of the present invention, the umbrella 100 is constructed to be resistant to inversion from the wind. The umbrella includes a canopy that is formed of two separate canopies, namely, a lower canopy 350 and an upper canopy 390. As described herein, the lower canopy 350 is the canopy which is secured to the ribs 300. The lower canopy 350 can and preferably does have a traditional shape, such as an octagonal shape in its untensioned state.
The lower canopy 350 is made from a water-resistant material and can be construction from a number of smaller individual panel sections (panels) 360. More specifically, each panel section 360 can be a substantially triangular shaped section 360 and the plurality of sections 360 are cut and sewn together to at least generally conform to the spaced between the ribs 200. The lower canopy 350 includes a central opening which is constructed to fit tightly over the hub 119. The lower canopy 350 is also preferably secured to the hub 119 using any number of conventional means.
In the illustrated embodiment in which each panel section 360 has a triangular shape, corners 365 of the lower canopy 350 correspond to the seam lines between the panel sections 360.
As discussed herein, quite often, a gust of wind catches the umbrella user unaware and the wind exerts a force against the inner surface of the lower canopy 350. Such force will cause the lower canopy 350 to invert from the position shown in
Each vent opening 370 can be formed to have any number of different shapes so long as they function as described herein and provide a vent for air to escape between the two canopies 350, 390. More specifically, air entering the underside of lower canopy 350 will exit through vent openings 370 so as to allow relief for the wind pressure that would normally invert umbrella 100. In the illustrated embodiment, the vent opening 370 has an egg shape; however, it can be formed to have any number of other shapes.
In order to prevent rain from entering vent holes 370, while simultaneously permitting air to exit from the underside of lower canopy 350 through vent holes 370, the upper canopy 390 is positioned over lower canopy 350 in covering relation to vent holes 370. Upper canopy 390 is preferably comprised of the same water-resistant material as lower canopy 350 and is preferably made from a corresponding number of panel sections (panels) 395 as lower canopy 350. However, each panel section 395 has a dimension in the radial direction of umbrella 10 which is less than that of the corresponding panel section 360 of lower canopy 350.
A center opening is also provided in upper canopy 390 and, like the lower canopy 350, the upper canopy is attached about the shaft 110.
In order to secure the peripheral edge of upper canopy 390 to umbrella 100, a strip of elastic material 600 has first ends 602 thereof sewn or otherwise attached to corners 397 of adjacent sectors 395 of upper canopy 390 and opposite ends 604 are attached to corners 365 of adjacent sectors 360 of the lower canopy 350. Because of the use of an elastic strip 600, upper canopy is maintained in a slightly taut condition, whether umbrella 100 is in the opened position or the closed position.
In accordance with the present invention, a plurality of connectors 700 with each connector 700 being configured for not only securing a second end 604 of the strap 600 to the lower canopy 350 but also for securing the lower canopy 350 to a distal end of one rib 200. As shown in
The connector 700 is thus an elongated member that is flexible to allow it to wrap around from the outer surface to the inner surface of the lower canopy 350. The connector 700 is thus formed of a suitable material that permits such wrapping of the connector 700. For example, the connector 700 can be formed of a rubber material or a synthetic material or the like.
As shown in the figures, each of the first and second portions 710, 720 has a tapered construction with the connector 700 being narrower at each end compared to a middle portion 715 of the connector 700. The middle portion 715 is the portion that wraps around the peripheral edge of the lower canopy 350.
As shown in
The second end 604 of the strap 600 can be captured below the first portion 710 of the connector 700 and the outer surface of the lower canopy 350, thereby securely attaching the second end 604 of the strap 600 to the lower canopy 350. It will be appreciated that any number of different techniques can be used to capture the second end 604 beneath the first portion 710 of the connector 700. For example, stitching can be used with the stitching passing through edges of both the connector 700 and the strap 600 as well as the lower canopy 350. In fact, the stitching can pass through the second portion 720 along the inner surface of the lower canopy 350 so as to effectively attach the first and second portions 710, 720 to the lower canopy 350.
It will be understood that other techniques can be used to securely attach the connector 700 to the lower canopy 350 including but not limited to the use of adhesives or other bonding agents or other mechanical fasteners, etc. In any event, the connector 700 captures the strap 600 and fixes it relative to the lower canopy 350.
The second portion 720 of the connector 700 is formed such that it defines a pocket 730. The pocket 730 is defined between the underside of the second portion 720 and the inner surface of the lower canopy 350. The connector 700 has an opening 732 formed at or near the end of the connector 700 and this opening 732 defines an entrance into the pocket 730. It will be understood that the attachment (e.g., as by stitching) of the second portion 720 to the lower canopy 350 creates the interior pocket underneath the second portion 720.
The pocket 730 and opening 732 are configured and sized to receive a distal end 201 of the rib 200. A tip cap 800 can be provided for securely locating and holding the distal end 201 of the rib 200 in place in the pocket 730. The tip cap 800 can have a tubular construction and is preferably securely anchored within the interior space of the pocket 730. The tip cap 800 has an open end and an opposite closed end. Any number of different techniques can be used to anchor the tip cap 800 within the pocket 730. For example, an adhesive or other bonding agent can be used to securely anchor the tip cap 800 in the pocket 730.
The tip cap 800 can have any number of different shapes including the tubular cylindrical structure shown in
As shown in
To couple the rib 200 to the connector 700, the lower canopy 350 is manipulated and the distal end 201 of the rib 200 is inserted into the open end of the tip cap 800. Since the canopies are under tension (via spring 801), the distal end of the 201 of the rib 200 contacts the closed end of the tip cap 800.
In this manner, the connector 700 represents a single structure that not only fixedly attaches one end of the elastic strap 600 to the lower canopy 350 but also detachably couples one rib 200 to the lower canopy 350. In this manner, the canopies 350, 390 are attached to one another and the ribs 200 are coupled to the canopy 350 as well.
In sum, the rubber canopy tip (i.e., connector 700) is attached (e.g., stitched) to the canopy to create a pocket. The rib 200 is connected to the plastic rib tip 800 with a spring 801 in between the two which deploys a constant pressure to the rubber canopy tip, which in turn pulls the canopy to a taught shape. The rubber canopy tip (connector 700) is attached (sewn) to the canopy creating a pocket for the rib tip 800 to fit inside of, which then spreads the load on the canopy fabric. By spreading the load on the canopy, it limits the ability of torn canopies at the tips (seams) (which is a common problem with umbrellas). In other words, the rubber pocket (i.e., connector 700) helps deploy pressure (generated by the tensioned rib) over a larger area which reduces the risk of the canopy 350 tearing at the seams (i.e., where adjacent canopy panels are attached to one another).
The connector 700 also can act as a safety feature in that the connector 700 can be formed of a softer material, such as rubber, and is represented by a relatively large, soft surface in the event that the umbrella was blown into contact with one's body or a body of a third party. In other words, the rubber pocket (i.e., connector 700) also acts as a safety feature by creating a large flat surface on the edge instead of a sharp tip.
It will be appreciated that the rubber canopy tip (connector 700) can be made of any number of other materials, such as leather, silicon, fabric, etc., and therefore is not limited to being formed of rubber.
Exemplary Rib Assembly
As shown in
The umbrella 100 also includes the top notch (hub) 119 that is an annular shaped member that is attached to the shaft 110 and surrounds the shaft 110. The top notch 119 is configured to receive ribs 200 and thus serves an attachment point for such ribs. The ribs are attached to the shaft 110 by fitting into the top notch 119 and can then be held by a wire or other means. The top notch 119 can be a thin, round nylon or plastic piece with teeth around the edges.
As will be appreciated by the following description, each rib 200 is coupled to both the top notch 119 and the runner 150 and this results in the opening and closing of the rib 200 and the attached canopy (not shown) based on the direction of movement of the runner 150. The connection between the rib 200 and the runner 150 is made by a strut 300 (main strut). The strut 300 is an elongated structure that has a first end 302 and an opposite second end 304, with the first end 302 being pivotally attached to the runner 150 and the second end 304 being pivotally attached to the rib 200. The pivotal connection between the strut 300 and the runner 150 and between the strut 300 and the rib 200 can be accomplished with a fastener, such as a rivet or pin, etc. More specifically, a first strut joint 310 is formed between the strut 300 and the runner 150 at the first end 302 and a second strut joint 320 is formed between the strut 300 and the rib 200 at second end 304.
As shown in
The second strut joint 320 is in the form of a double joint and is best shown in
The strut 300 can be formed of any number of different materials including a metal (e.g., a zinc alloy).
As shown in the figures, the rib 200 is an elongated structure that is coupled to other components of the umbrella to provide a rib assembly defined by a plurality of ribs 200 that open and close.
Each rib 200 is an elongated, flexible structure that has a first end (proximal end) 210 and an opposing second end (distal end) 212. The first end 210 is pivotally attached to the top notch 119 and more specifically, a first rib joint 220 can be provided at the first end 210 and be designed to allow the rib 200 to pivot relative to the top notch 119. In the illustrated embodiment, the first rib joint 220 can be in the form of a male end joint that can have a similar or the same construction as the first rib joint 310 that is part of the strut assembly.
As best shown in
With reference to
According to one aspect of the present invention, an anti-inversion mechanism (feature) 400 is provided and is configured to counter an inversion force that is applied to the umbrella during select operating conditions and in particular, during windy conditions or other adverse conditions. As is well known by users of umbrellas, if a sudden gust of wind is directed upwardly toward the inside of the umbrella, the pressure applied by the wind will invert the canopy causing the ribs to work counterproductively forcing it outwards. The canopy generally assumes a concave shape when inversion occurs and similarly, the ribs are force to pivot in unintended directions which can result in one or more ribs breaking. This renders the umbrella not usable. The umbrella of the present invention has the anti-inversion mechanism 400 that is made up of several components that are individually discussed below.
As shown in
The first and second end joints 411, 413 can be mechanically fixed to the elongated strut body or the end joints 411, 413 can be molded over an existing strut material.
The anti-inversion strut 410 can be formed of any number of different materials including metals and synthetics. In one exemplary embodiment, the anti-inversion strut 410 comprises a 6 mm carbon Fiber rod.
The anti-inversion mechanism 400 also includes a floating joint 500 that is slidingly coupled to the rib 200 and configured to mate with the second end joint 413.
The anti-inversion strut 410 is coupled to the rib 200 by inserting the connector 520 between the spaced fingers 417 of the second end joint 413. As in the other joint, a fastener or the like can be used to couple the connector 520 to the fingers 417.
The rib 200 is received within and passes through the bore 512 and the size (diameter) of the bore 512 and the size (diameter) of the rib 200 are selected such that the floating joint 500 can freely move in a longitudinal direction along the length of the rib 200. This allows the floating joint 500 to be one which can freely travel up (toward the top notch 119) and down the rib 200 (toward the rib tip) when the umbrella opens and closes.
It will be appreciated that in another embodiment, the floating joint can be a male part that includes male connector 520; however, is positioned internal to the rib 200 such that the floating joint is free to move within the hollow inside of the rib 200 (e.g., an aluminum extrusion rib or formed steel rib). The rib 200 could thus have a linear slot formed therein through which the connector 520 passes. The operation of the floating joint is otherwise the same. In this alternative embodiment, the “floating action” of the floating joint thus occurs internally within the rib 200 as opposed to on the outside of the rib 200 in the illustrated embodiment.
With reference to
It will be appreciated that when the umbrella is in the open position, the floating joint 500 rides along the rib 200 until it contacts the floating joint stop 530. The floating joint 500 in combination with the floating joint stop 530 prevents the rib 200 from inverting as when under the force of a strong wind. Inversion is prevented since the rib cannot bend upwardly due to the blocking action of the floating joint stop 530.
As mentioned previously, the above-described rib and strut assembly is merely exemplary in nature and is not limiting of the present invention.
The connector 700 thus provides a quick yet efficient manner for securely coupling the upper canopy 390 to the lower canopy 350 and for releasably securing the ribs 200 to the umbrella (i.e., to the lower canopy 350).
While the invention has been described in connection with certain embodiments thereof, the invention is capable of being practiced in other forms and using other materials and structures. Accordingly, the invention is defined by the recitations in the claims appended hereto and equivalents thereof.