The following relates to a pneumatic distribution device included in a pressure supply system for operating a flow regulating device for controlling the flow on the surface of a blade for a wind turbine.
A wind turbine rotor blade may have installed a flow regulating device on its surface, which flows from the leading edge to the trailing edge of a rotor blade of a wind turbine. An example of such a flow regulating device is a vortex generator (VG) installed on the suction side of the wind turbine rotor blade. In general, a flow regulating device may be considered to comprise a device which is capable of enhancing the lift coefficient of the aerofoil section, for example by increasing the level of energy of the boundary layer of the rotor blade.
Other aerodynamic devices may act in concert with the vortex generator and may influence the effect of the vortex generator depending on the state of the spoiler. Examples of the latter aerodynamic device are typically spoilers, installed on the suction side of the blade, between the trailing edge and the vortex generator. Alternatively, spoilers may be present alone, i.e., not combined with vortex generators or other flow regulating devices. Spoilers may be configured such that its shape and/or orientation can be regulated, e.g., by a pneumatic or hydraulic or mechanical actuator.
The spoiler may act in concert with the vortex generator and may influence the effect of the vortex generator depending on the state of the spoiler, i.e., a protrusion height and/or tilt angle by which the spoiler extends from or is tilted relative to other surface portions of the rotor blade.
EP 1 623 111 discloses a wind turbine blade including adjustable lift-regulating means arranged on or at the surface of the wind turbine blade and extending in the longitudinal direction of the blade and an activation means by which the lift-regulating means can be adjusted and thus alter the aerodynamic properties of the blade. The lift-regulating means comprise one or more flexible flaps.
EP 2 321 528 discloses a wind turbine blade comprising a blade body and a device for modifying the aerodynamic surface or shape of the blade, wherein a pneumatic actuator controls the position and/or movement of the device, wherein a pressure chamber positioned within the blade body is present. The pressure chamber may be pressurized thereby changing the state of the device, thereby modifying the aerodynamic surface or shape of the blade.
WO 2018/041420 disclose a rotor blade comprising an aerodynamic device for influencing the air flow flowing from the leading edge section of the rotor blade to the trailing edge section of the rotor blade, wherein the aerodynamic device is mounted at a surface of the rotor blade and comprises a pneumatic or hydraulic actuator, such as a hose or a cavity of which the volume depends on the pressure of the fluid being present inside the pneumatic or hydraulic actuator.
It is desirable to have spoilers or other flow regulating aerodynamic devices characterized by high efficiency, in particular having a short response time.
An aspect relates to a wind turbine including:
The above-described arrangement of the pressure supply system allows achieving a short response time in operating the aerodynamic device between the first protruded configuration and the second retracted configuration, by conveniently dimensioning the cavities, the port and the openings a large flow rate of the pressurized fluid through the distribution valve may be enabled.
According to embodiments of the present invention, the distribution element includes a third cavity connected to the port, the third cavity having a third opening in communication with the first opening when the distribution element is in the first operating position a or in communication with the second opening when the distribution element is in the second operating position.
According to other embodiments of the present invention, the distribution element is interposed between the first cavity and the second cavity. The distribution element may rotatable between the first operating position and the second operating position.
According to further embodiments of the present invention, the first cavity and the second cavity are through holes provided in a valve body of the distribution valve. The first cavity and the second cavity may be parallel to each other. The distribution element may be rotatable about an operation axis inclined with respect to a first axis of the first cavity or a second axis of the second cavity.
According to embodiments of the present invention, the pressure supply system comprises a plurality of distribution valves having a plurality of respective first cavities connected to each other to form a pressure passage connected to the pressure line and a plurality of respective second cavities connected to each other to form a suction passage connected to the suction line.
The through-going cavities in the valve bodies of the distribution valves make it easy to assemble a desired number of valves into a valve manifold with common pressure and suction lines.
According to embodiments of the present invention, the distribution valve comprises two stepper motors connected in series for operating the the distribution element between the the first operating position and the second operating position. The two stepper motors provide redundancy during operation of the distribution element of the distribution valve.
The aspects defined above, and further aspects of the present invention are apparent from the examples of embodiment to be described hereinafter and are explained with reference to the examples of embodiment. The invention will be described in more detail hereinafter with reference to examples of embodiment but to which the invention is not limited.
Some of the embodiments will be described in detail, with reference to the following figures, wherein like designations denote like members, wherein:
The wind turbine 1 further comprises at least one blade 20 (in the embodiment of
The aerodynamic device 30 is arranged on the suction side 25 between the leading edge 41 and the trailing edge 31.
The aerodynamic device 30 in
The actuating hose 53 is comprised in a pressure supply system 52, controlled by a control unit 51 and monitored by a monitor unit 54. The pressure supply system 52 provides a pressurized fluid, for example pressurized air or other pressurized gasses. In this context, the term “pressurized fluid” not only implies positive pressure but also negative pressure, wherein fluid is sucked (or “drawn”) out of the actuating hose 53 of the aerodynamic device 30. For respectively providing a positive and a negative pressure to the actuating hose 53, the pressure supply system 52 respectively comprises a pressure line and a suction line. Finally, the control unit 51 is responsible for setting a specific pressure at the pressure supply system 52 which subsequently leads to a certain predetermined pressure at the aerodynamic device 30.
In the example shown in
The rotor blade 20 additionally comprises a flow regulating unit 40 comprising multiple pairs of vortex generators. The flow regulating unit 40 are arranged on the suction side 25 of the blade 20 between the aerodynamic device 30 and the the trailing edge 31. According to other embodiments of the present invention (not shown in the attached figures), the flow regulating unit 40 are arranged on the suction side 25 of the blade 20 between the leading edge 41 and the aerodynamic device 30. According to other embodiments of the present invention (not shown in the attached figures), the flow regulating unit 40 are not present and only the aerodynamic device 30 is used to regulate the flow on the surface of the blade 20. According to other embodiments of the present invention (not shown in the attached figures), the blade 20 comprises a plurality of aerodynamic devices 30.
The first cavity 61 and the second cavity 62 may be provided in the valve body 68 as two respective through holes having a respective first axis X1 and a second axis X2. The axes X1, X2 of the first cavity 61 and the second cavity 62 may be parallel to each other. The distribution element 70 is interposed between the first cavity 61 and the second cavity 62. The distribution element 70 is rotatable between the first operating position and the second operating position. The distribution element 70 may be rotatable about an operation axis X3 inclined with respect to the first axis X1 of the first cavity 61 and the second axis X2 of the second cavity 62. The operation axis X3 may be orthogonal with respect to the plane identified by the first axis X1 and the second axis X2. The first operating position and the second operating position may be angularly distanced from one another of an angle comprised between 90 and 270 degrees. The first operating position and the second operating position may be angularly distanced from one another of an angle of 180 degrees. The distribution element 70 and the third cavity 73 may be cylindrical and co-axial with the operation axis X3. According to other embodiments of the present invention (not shown), the distribution element is translatable between the first operating position and the second operating position. The distribution valve 60 further comprises two stepper motors 69 co-axial with the operation axis X3 and connected in series for operating the the distribution element 70 between the the first operating position and the second operating position. The stepper motors ensure that the distribution element 70 can switch very fast between the the first operating position and the second operating position. The presence of two stepper motors 69 provides a convenient level of redundancy. The distribution valve 60 further comprises an inductive sensor 67 used for zero-point adjustment of the stepper motors 69. According to other embodiments of the present invention (not shown), the distribution valve 60 has a pneumatic activation or a solenoid activation.
Accordingly, the rotor plane of the wind turbine can be divided into portions extending along the blades and comprised between the blade root 21 and the blade tip 20, each portion comprising one or more aerodynamic devices 30 and one distribution valve 60 being provided for operating all the aerodynamic devices 30 in corresponding portions of all the blades, for example one distribution valve 60 for operating all the aerodynamic devices 30 in all the portions closer to the blade roots 21 and one distribution valve 60 for operating all the aerodynamic devices 30 in all the portions closer to the blade tips 22.
Although the present invention has been disclosed in the form of preferred embodiments and variations thereon, it will be understood that numerous additional modifications and variations could be made thereto without departing from the scope of the invention.
For the sake of clarity, it is to be understood that the use of “a” or “an” throughout this application does not exclude a plurality, and “comprising” does not exclude other steps or elements. The mention of a “unit” or a “device” does not preclude the use of more than one unit or device.
Number | Date | Country | Kind |
---|---|---|---|
19213882.4 | Dec 2019 | EP | regional |
This application claims priority to PCT Application No. PCT/EP2020/083403, having a filing date of Nov. 25, 2020, which claims priority to EP Application No. 19213882.4, having a filing date of Dec. 5, 2019, the entire contents both of which are hereby incorporated by reference.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/EP2020/083403 | 11/25/2020 | WO |