The present invention relates to a wind turbine component having a corrosion protection structure, such as a blade root, and a wind turbine having the same.
Typically, the major components of a wind turbine, such as blade, nacelle, tower, or hub, are transported to the installation site to be installed there. The connecting portions of these components which allow interconnection are important for a secure connection with other components but usually sensitive to the outside environment, therefore these connecting portions are usually protected by various means in the factory such as oil, cover etc. and then exposed at site for installation.
However, when the components arrive at the site and then the current corrosion prevention structure of the connecting portion is removed, a small amount of corrosion may appear even just during the short time of installation. Given that wind turbines are designed for a 20-year or even longer life time, even a small amount of corrosion occurring during installation is undesirable, in particular for offshore projects where environment is particularly severe, issue of corrosion during installation are problematic.
As an example, blades are usually connected to the hub via inserts secured in the blade root section. Even if a small amount of corrosion exists in the inserts, when the blade is mounted on the bearing there is a risk that corrosion will grow into the endface of the insert and/or the bond line between the insert and the bearing surface. That will reduce the strength of the connection. It is possible to use stainless steel for the insert, but due to the large number of the inserts for large blade, the cost will significantly increase.
An object of the present invention is, at least partly, to overcome the above disadvantages and drawbacks of the prior art and to provide an improved corrosion protection structure.
The above object, together with numerous other objects, advantages, and features, which will become evident from the below description, is accomplished by a solution in accordance with the present invention by a wind turbine component, having a connecting portion for connecting the wind turbine component to another turbine component and at least part of the connecting portion is formed of a first type of metal, wherein the connecting portion is further provided with an additional part formed of a second type of metal which is connected to the metallic part of the connecting portion; and the second type of metal is more active than the first type of metal, whereby the additional part forms a sacrificial anode.
In one embodiment, the wind turbine component is a blade, and the connecting portion is a blade root section with steel or iron inserts secured into the end thereof, and a plurality of the additional parts are provided associated with the respective inserts.
For a blade, typically a number of inserts formed of steel or iron are circumferentially spaced in the end of blade root section for connecting the blade with hub. These inserts are fitted into holes in the end of the blade root section and secured there with adhesive. Preventing the inserts from been corroded is important for the strength of blade connection. Certainly, it should be noted that the present invention is not limited to blade, and it could be applied in top tower section or hub etc.
In one embodiment, the inserts are of cylindrical form at end region adjacent their exposed face, and the additional parts are in the form of ring secured on the outside of the cylindrical surface
In one embodiment, adhesive is provided between the insert and the blade root section to fasten the insert, and the ring is arranged at the boundary, which is facing exterior environment, of the insert and the blade root section; and boundary between the ring and the blade root section is covered with adhesive so as to prevent water/moisture etc. from contacting with the insert through the boundary between the ring and the blade root section.
The first type of metal could be steel or iron, and the second type of metal could be zinc, aluminum or magnesium.
The invention further relates to a wind turbine integrating the above mentioned components.
The invention and its many advantages will be described in more detail below with reference to the accompanying schematic drawings which, for the purpose of illustration, show some non-limiting embodiments and in which
All the drawings are schematic and not necessarily to scale, and they show only those parts necessary to elucidate the invention, other parts being omitted or merely suggested.
The invention is described and illustrated in the context of a connecting portion of a blade root, but it shall be understood that the invention is not limited to blade root connecting portions, rather it can be applied in other wind turbine component employing metallic structure where such a corrosion protection is needed.
In order to further enhance corrosion protection effect, the ring 14 may be partially covered with adhesive to prevent water/moisture from entering into the bond line between the insert 12 and the hole in the blade root section 11. As a preferred form, as shown in
Although the use of a zinc anode is preferred, as long as it is more electrically active compared to steel or iron inserts and readily accessible and inexpensive, other metals could be used such as such as aluminum or magnesium.
Also, depending on the specific need of corrosion protection, shape, size, and location etc., of the sacrificial anode can be changed or supplemented with additional parts.
Again, although the above embodiment only describes cathodic protection of connecting portion of a blade root, the present invention is not limited to a blade root connecting portion; rather, it can be applied to other components where same need exists, in particular where a part is exposed to the exterior prior to installation, such as tower connecting portion, the connecting portion between tower and nacelle, and the connecting portion between nacelle and hub etc.
Although the invention has been described above in connection with preferred embodiments of the invention, it will be evident for a person skilled in the art that several modifications are conceivable without departing from the invention as defined by the following claims.
Number | Date | Country | Kind |
---|---|---|---|
PA201170053 | Jan 2011 | DK | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/DK2011/050494 | 12/19/2011 | WO | 00 | 10/10/2013 |
Number | Date | Country | |
---|---|---|---|
61437035 | Jan 2011 | US |