1. Field of the Invention
This invention finds application in wind farm power generation arrangements, and is considered particularly beneficial when used in conjunction with off-shore wind farm arrangements or arrangements disposed in other locations with limited access.
2. Description of Related Art
Wind turbine rotor blade pitch adjustment is commonly used to mitigate effects of asymmetric loads on turbine components. U.S. Pat. Nos. 4,193,005 and 4,420,692 to Kos et al., 4,201,514 to Huetter, 4,348,155 to Barnes et al., 4,352,629 to Cheney, Jr., 4,435,647 to Harner et al., 6,465,901 to Croes, 7,004,724 and 7,160,083 to Pierce, et al., 7,342,323 to Avagliano et al., and 7,530,785 to Deering et al., for example, relate to this sort of technology.
The Pierce et al. ('724) patent concerns a method and an apparatus for load control in which the pitch of each wind turbine blade is individually controlled to reduce turbine component fatigue and loading. In the Pierce et al. ('724) arrangement, a blade pitch controller is coupled to one or more blade rotation drives. By varying the pitch of the blades using such controllers, the magnitude and/or duration of loads placed on the Pierce et al. ('724) wind turbine can be reduced, and the overall performance of the turbine can be improved as a result. The entire disclosure provided by the Pierce et al. ('724) patent is expressly incorporated by reference into the present disclosure as non-essential subject matter.
A wind turbine blade position adjustment system according to the invention provides for continued wind turbine blade repositioning operation even after the occurrence of certain faults. The system includes a plurality of electrically operable motors, each of which is interconnected with one of the wind turbine blades to reposition that wind turbine blade and modify the blade pitch. Each motor includes two or more sets of electrically isolated windings. A power supply is separately interconnected with each of the electrically isolated winding sets to provide for continued repositioning of each of the wind turbine blades upon occurrence of a fault, such as voltage or current deterioration, in one of the winding sets. A fault indication arrangement may be interconnected with the motors to ascertain performance deterioration in any of the electrically isolated winding sets.
In one arrangement, the power supply is separately interconnected with each of the electrically isolated winding sets by separate conductive lines. A control unit may be used to regulate output from the power supply based, for example, on information received about wind or other forces exerted on the turbine blades.
a is a schematic illustration of part of an overall wind turbine blade pitch adjustment system according to one embodiment of the present invention.
b is a schematic illustration of the remainder of the system shown in
The present invention concerns utilizing certain types of electric motors to produce load control by individually adjusting the pitch of each of a plurality of wind turbine blades to reduce turbine component fatigue and loading in an improved manner. Electric motors and technology generally relating to electric motors and other power transmission arrangements find applications in a wide variety of fields. U.S. Pat. No. 4,547,713 to Langley, for example, concerns a motor usable as a scanner drive for a radar system. Further examples include U.S. Pat. No. 4,562,399 to Fisher, which relates to a brushless DC tachometer operable over a wide speed range, U.S. Pat. No. 6,084,330 to Fisher et al., which concerns a rotor construction applied to electronically commutated high speed motors, U.S. Pat. No. 6,433,536 to Yundt et al., which discloses a position indicator using multiple sensors to provide redundancy, and U.S. Pat. No. 6,705,581 to Trago et al., concerning a mount assembly for an electric motor usable to drive an endless belt at a predetermined tension.
In certain applications, motors having independently excitable, redundant winding sets are considered preferable to ensure system operation in the event of failure of a winding or its associated drive circuit. U.S. Pat. No. 4,434,389 to Langley, for example, discloses a DC electric servomotor with a stator including multiple non-overlapping sets of redundant windings potentially usable to assist in the positioning of aircraft control surfaces. U.S. Pat. No. 5,929,549 to Trago et al. is another example, and concerns a brushless DC motor possibly finding application in safety, medical, and life support systems. The entire disclosure provided by the Langley ('389) patent and the entire disclosure provided by the Trago et al. ('549) patent are expressly incorporated by reference into the present disclosure as non-essential subject matter.
The wind turbine blade pitch adjustment system 10 shown in
Each of the motors 12, 14, and 16 has a respective output shaft 12s, 14s, and 16s, with each of these output shafts being connected, directly or by way of appropriate gearing, to a respective wind turbine blade 22, so that rotation of that shaft produces corresponding rotation of the associated wind turbine blade for pitch adjustment. It will be understood that rotation of any of the blades 22 about a blade axis 26 in the directions indicated by arrows 24 effects a change in the pitch of that blade 22. Adjustment of blade positions could be based on output received from a central processing unit (CPU) 28 or other control unit by the power supply 20. The power supply 20 and the CPU 28 collectively form at least part of an overall drive/power supply 21.
Output provided by the CPU 28 could factor into account signals from control circuitry, usable in applicable pitch control algorithms, relating to wind forces exerted on the blades 22, and signals from feedback devices 23, 25, and 27, forming parts of overall servo systems respectively, including the motors 12, 14, and 16 and the drive electronics in the CPU 28, could be taken into consideration. Each feedback device 23, 25, or 27, for example, could be connected directly to a motor shaft 12s, 14s, or 16s, and could be operable to continuously report the actual motor shaft position to the CPU 28 or other such drive microprocessor by way of lines 29, 31, and 33. Using such feedback devices enables the drive to make small corrections in order to minimize any error between the commanded shaft positions and the actual shaft positions. In a wind turbine blade pitch adjustment system, a commanded position would typically be the optimal turbine blade pitch angle. Continually monitoring and correcting the error closes the servo loop.
According to the present invention, each of the motors 12, 14, and 16 used in the system 10 represented in
Also shown a part of the system illustrated in
By way of a system such as that described, redundancy on a “per blade” basis is provided for electric motors utilized in wind turbine blade pitch adjustment applications. Redundant motion control and actuation circuitry are provided for each turbine blade 22 of the system, so that, if one motor winding of any of the motors 12, 14, and 16 fails, the other circuit of the relevant motor can provide emergency, near half-performance motion. This feature allows a more fault-tolerant implementation of reliability-sensitive wind turbine power generation market applications. When a fault of the sort mentioned occurs, it is possible to have the wind turbine continue to generate power, albeit at reduced capacity, while the fault detection circuitry alerts personnel of the need for maintenance. Maintenance could be scheduled, and, in the meantime, the turbine would be able to continue to generate power. This is considered particularly beneficial for off-shore wind farm power generation arrangements, as access difficulties may limit response time, and the associated down-time could be very costly.
For simplicity, the illustration provided by
It will be understood that, in the arrangement illustrated in
This invention allows both independent blade position redundancy and more robust redundancy through the use of two or more independent windings and controls that share a common rotor and mechanics. Redundant winding sets can provide full performance when used together, or partial performance when fewer than all of the winding sets are operational. By way of the invention, desirable redundancy features are applied in a new way to improve pitch control on wind turbines.
The foregoing disclosure has been set forth merely to illustrate the invention and is not intended to be limiting. Since modifications of the disclosed embodiments incorporating the spirit and substance of the invention may occur to persons skilled in the art, the invention should be construed to include everything within the scope of the appended claims and equivalents thereof.