The present application is based on, and claims priority from, Japanese Application Number 2006-082936, filed Mar. 24, 2006, the disclosure of which is hereby incorporated by reference herein in its entirety.
1. Field of the Invention
The present invention relates to a wind turbine blade, and especially relates to a wind turbine blade preferably used for wind power generation and to a manufacture method thereof.
2. Description of the Related Art
One property required for wind turbine blades is lightweight with sufficient strength. This is important especially to provide large and long wind turbine blades (for example, a length more than 20 meters). To increase the length of a wind turbine blade, the structural strength of the wind turbine blade is required to be sufficiently high. However, the weight increase accompanied by the strength enhancement causes a mechanical load to be applied to the structure supporting wind turbine blades (for example, a nacelle and a tower). For example, a wind turbine blade having a high strength and also an excessive weight cannot be actually employed for a wind turbine.
The spar cap structure is a wind turbine blade structure which is currently widely used to satisfy both requirements of lightweight and strength. The spar cap structure is disclosed, for example, in Tony Burton et al., Wind Energy Handbook, John Wiley & Sons, LTD. U.K. 2001, December, P. 380.
The above-described spar cap structure definitely satisfies the requirements for lightweight and sufficient strength to a certain extent. However, a recent wind turbine requires wind turbine blades to be further large and long. In addition, it is increasingly required to manufacture a wind turbine blade at a low cost. It has been becoming difficult for the wind turbine blade employing the spar cap structure to satisfy such requirements.
From such backgrounds, there is a need for a structural design of a wind turbine blade which satisfies both requirements of lightweight and strength at a high level, preferably at a low cost.
Therefore, an object of the present invention is to provide a wind turbine blade with sufficient strength and lightweight, preferably at a low cost.
In an aspect of the present invention, a wind turbine blade is provided with an outer skin layer formed of fiber-reinforced plastic; and a plurality of main structural members formed of fiber-reinforced plastic integrally with the outer skin layer to extend in a blade length direction. The main structural members include: a plurality of main dorsal structural members positioned on a dorsal side of the wind turbine blade; and a plurality of main ventral structural members positioned on a ventral side of the wind turbine blade.
The wind turbine blade thus structured allows increasing the thickness-to-width ratio of the main structural members, due to the arrangement in which multiple main structural members are dispersed on each of the dorsal and ventral sides. Therefore, the strength to the compressive stress in the direction perpendicular to the blade cross section of the wind turbine blade is enhanced with a minimum weight increase.
The arrangement in which multiple main structural members are dispersed on each of the dorsal and ventral sides is also effective for the cost reduction. In the arrangement in which multiple main structural members are dispersed, optimization of the arrangement of the main structure members allows the main structural members to be shaped in a rectangular shape or an approximately rectangular shape. This allows forming the main structural members with rectangular fiber cloths. The fact that the fiber cloths are shaped in a rectangular shape enhances the utilization ratio of the row material, effectively reducing the manufacture cost. In order to further reduce the manufacture cost, it is preferable that the fiber cloths have the same width in the blade chord direction. When the main structural members are formed of rectangular fiber cloths, the main structural members are preferably shaped in a linear shape extending in the blade length direction.
When the wind turbine blade further include an inner skin layer positioned inside the outer skin layer and coupled integrally with the outer skin layer and a core member sandwiched between the outer skin layer and the inner skin layer, it is preferable that the end surface out of the surfaces of the core member positioned adjacent to a main structural member is oblique to the main surface opposed to the blade surface of the wind turbine blade and the fiber cloths are positioned so that the ends thereof are adjacent to the end surface, and have widths different from each other.
In this case, it is preferable for suppressing the stripping of the fiber cloths that the main and end surfaces of the core member form an obtuse angle, and the widths of the fiber cloths are increased as the distances thereof to the blade surface are decreased.
It is also preferable that the fiber cloths are laminated so that the ends thereof are alternately shifted in opposite directions along the blade chord direction, and the fiber cloths are arranged so that only one end of each of the fiber cloths in the blade chord direction overlaps the end surface.
Preferably, the wind turbine blade further includes a plurality of beam members. In this case, the beam members are provided so as to couple n pieces of the plurality of main dorsal structural members to n pieces of the plurality of main ventral structural members, n being an integer equal to or more than two. The number of beam members may be equal to or different from the number of the main dorsal structural members (and the main ventral structural members). When the main structural members include a plurality of rectangular fiber cloths, the beam members are preferably shaped in a linear shape extending in a blade length direction.
It is preferable that a first main dorsal structural member out of the main dorsal structural members is formed of material having tensile and compressive strengths higher than those of a second main dorsal structural member out of the plurality of main dorsal structural members.
When the number of the main dorsal structural members is equal to or more than three, it is preferable that the first main dorsal structural member is arranged at a medium position of the plurality of main dorsal structural members, and the second main dorsal structural member is arranged closest to a leading edge or a trailing edge of the wind turbine blade among the main dorsal structural members.
Correspondingly, it is preferable that a first main ventral structural member out of the main ventral structural members is formed of material having tensile and compressive strengths higher than those of a second main ventral structural member out of the main ventral structural members.
When the number of the main ventral structural members is equal to or more than three, it is preferable that the first main ventral structural member is arranged at a medium position of the plurality of main ventral structural members, and the second main ventral structural member is arranged closest to a leading edge or a trailing edge of the wind turbine blade, among the main ventral structural members.
The wind turbine blade preferably further includes a reinforcing rib coupled to the outer skin layer.
The outer skin layer 1 is used for providing the blade profile of the wind turbine blade 10. The outer skin layer 1 is formed of fiber-reinforced plastics (FRP) such as carbon fiber reinforced plastics (CFRP) and grass fiber reinforced plastics (GFRP).
The main structural members 2 and 4 are structural bodies for mainly ensuring the strength of the wind turbine blade 10. The main structural members 2 are arranged on the dorsal side of the wind turbine blade 10, and the main structural members 4 are formed on the ventral side of the wind turbine blade 10. As shown in
Referring to
Referring back to
As shown in
Referring back to
One feature of the wind turbine blade 10 of the present embodiment is that multiple main structural members 2 and 4 are dispersedly arranged on each of the dorsal and ventral sides. The above-described structure allows increasing the ratio of the thickness to the width (in the blade chord direction) of the respective main structural members 2 and 4 for the same total cross section area of the main structural members, in comparison with the spar cap structure in which only one main structural member is provided on each of the dorsal and ventral sides. This allows enhancing the strength to compressive stress in the direction perpendicular to the cross section of the wind turbine blade, suppressing the weight increase at minimum.
In addition, the structure in which multiple main structural members 2 and 4 are dispersedly arranged on each of the dorsal and ventral sides is also effective for the cost reduction. The spar cap structure, which includes only one main structural member on each of the dorsal and ventral sides, requires to use main structural members of the shapes matching with the cross section of the blade in order to ensure strengths over the whole cross section of the wind turbine blade 10, and thus requires to use fiber cloths 12 of shapes matching with the cross section of the blade as shown in
On the other hand, the structure in which multiple main structural members 2 and 4 are dispersedly arranged on each of the dorsal and ventral sides as described in the present embodiment provides a desired strength while allowing the main structural members 2 and 4 to be shaped in a rectangle shape or an approximately rectangle shape by optimizing arrangements of the main structural members 2 and 4. In the present embodiment, as shown in
The widths b1, b2 and b3 of the fiber cloths 14-1 to 14-3 used in each of the main structural members 2 and 4 may be different from one another. For example, in a case where the cross section shapes of the main structural members 2 and 4 are trapezoidal, the narrow fiber cloths 14-2 and 14-1 may be laminated on the widest fiber cloth 14-3 subsequently as shown in
For further cost reduction, it is preferable that the fiber cloths used in each of the main structural members 2 and 4 have the same width. The fiber cloths with the same width are preferable for efficient use of the raw material 11, and are also effective for simplifying the process of cutting the fiber cloths and thereby reducing efforts of manufacturing.
In a case where the fiber cloths used in the main structural members 2 and 4 are shaped in a rectangle shape, it is preferable that the main structural members 2 and 4 and the beam member 6 are in a linear shape extending in the blade length direction as shown in
The boundary portions between the main structural members 2 and the lightweight core members 3 often suffer from stress concentration, due to the discontinuous changes in the stiffness. To ease the stiffness discontinuation at the boundaries between the main structural members 2 and the lightweight core members 3, it is preferable that the widths of the fiber cloths 22 within the main structural members 2 in the direction of the blade chord gradually differ in the direction perpendicular to the cross section of the blade, as shown in
In one embodiment, as shown in
On the other hand, as shown in
In order to ease the discontinuation of the stiffness, as shown in
It would be apparent to the person skilled in the art that the structures shown in
Although
In order to achieve both of cost reduction and strength assurance at the same time, it is preferable to properly determine strength of materials constituting the main structural members 2 and 4, especially tensile and compressive strengths, on the basis of the positions of the main structural members 2 and 4 as shown in
As shown in
Number | Date | Country | Kind |
---|---|---|---|
2006-082936 | Mar 2006 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
3171631 | Aspinwall | Mar 1965 | A |
3429023 | Blythe et al. | Feb 1969 | A |
3528753 | Dutton et al. | Sep 1970 | A |
4449053 | Kutcher | May 1984 | A |
4976587 | Johnston et al. | Dec 1990 | A |
5375324 | Wallace et al. | Dec 1994 | A |
5474425 | Lawlor | Dec 1995 | A |
5499904 | Wallace et al. | Mar 1996 | A |
5755558 | Reinfelder et al. | May 1998 | A |
6715992 | Rinke | Apr 2004 | B2 |
7153090 | DeLeonardo et al. | Dec 2006 | B2 |
7198471 | Gunneskov et al. | Apr 2007 | B2 |
7322798 | Cairo | Jan 2008 | B2 |
7427189 | Eyb | Sep 2008 | B2 |
7473385 | Stiesdal et al. | Jan 2009 | B2 |
7503752 | Gunneskov et al. | Mar 2009 | B2 |
7575417 | Finn et al. | Aug 2009 | B2 |
20040253114 | Gunneskov et al. | Dec 2004 | A1 |
20050053466 | Finn et al. | Mar 2005 | A1 |
20060133937 | DeLeonardo et al. | Jun 2006 | A1 |
20060280613 | Hansen | Dec 2006 | A1 |
20070110584 | Stommel | May 2007 | A1 |
20090324412 | Roorda | Dec 2009 | A1 |
Number | Date | Country |
---|---|---|
06-066244 | Mar 1994 | JP |
07-279818 | Oct 1995 | JP |
2002-357176 | Dec 2002 | JP |
Number | Date | Country | |
---|---|---|---|
20090169392 A1 | Jul 2009 | US |