The present application relates to the use of wind power for powering electric vehicles and re-charging their batteries while driving. More specifically, the present application relates to the use of wind turbines for generating electrical power for electric vehicles and addresses the need for additional power required in autonomously driven electric cars.
Electric cars are becoming a viable alternative to gasoline or diesel-powered vehicles. Electric vehicles typically use a series of batteries, such as lithium ion batteries, and one or more electric motors, and the batteries can be charged via electricity from the power grid. Electric cars provide several benefits over conventional gasoline or diesel-powered vehicles, including being more environmentally-friendly, as electric cars do not emit greenhouse gases. Further, electric cars produce less roadway noise as compared with their gasoline and diesel-powered counterparts.
However, despite the benefits associated with electric cars, the number of electric cars on the road still remains small relative to gasoline or diesel-powered vehicles. One reason for the lack of electric cars is the limited distance that electric cars can travel before the batteries must be recharged (called “range”). This not only poses a practical limitation on how long of a trip a driver can plan in-between charges, but also cause fear in the mind of the driver that the one or more batteries will run out of power before he or she reaches the destination, which is termed “range anxiety.” As such, there is a need for extending the battery life of electric car batteries.
The present application relates to the use of wind powered turbines for generating electrical power for electric vehicles. In particular, the present application discloses wind-powered charging systems and methods for an electric vehicle. In one or more embodiments, the present system comprises one or more intake ports (air flow manifold or first tube) located within the grille of the vehicle. While the car is in motion, air flow enters the one or more intake ports. At the end of each intake port is at least one wind turbine disposed within a second tube, each wind turbine having a self-contained alternators and blades. Unique to the present design, the alternator is built into the rotating blades section of the generator tube and includes an inner tube comprising magnets on the inside of the tube, and a stationary magnetic coil (windings) attached to the horizontal hub. The blades are located on the outside of the inner tube. In operation, the air flow from the intake port is directed through and rotates the blades and inner tube of the turbine around the horizontal hub, thereby causing the magnets of the inner tube to rotate around the magnetic coil to generate electricity (AC or DC electricity) at the horizontal hub. As the blades rotate, the air flow is directed past the blades, through an exhaust vessel and out of an exhaust port, where the air flow exits to the outside of the vehicle. The hood over the rotating blades extends past the blades and helps the air flow to pass to the outside of the vehicle, thus reducing resistance and increasing efficiency.
The self-contained alternator is designed to have more than one voltage output. For example, the alternator can comprises one section of the magnetic coil (windings) that produces relatively low voltage output (e.g., 12 volts), and a second section of the magnetic coil (windings) that produces a relatively high voltage output (e.g., 300 volts). The low voltage output is designed for battery re-charging, while the high voltage output is designed for vehicle propulsion.
In one or more embodiments, the wind-powered charging system of the present application can be located within the hood of the vehicle, and can comprise a separate manifold cover to separate the wind turbine from other components of the vehicle located in the hood such as the engine or transmission. In one or more embodiments, the exhaust vessel must extend from the wind turbine far enough to create a low-pressure zone outside of the outer tube housing the wind turbine in order to efficiently pull the air through the exhaust vessel and out the exhaust port, thus reducing resistance. In other embodiments, the system can reside in other parts of the electric vehicle, and can be of various sizes and placement on vehicle as to adopt to the aerodynamic design of said vehicle and the efficiency of its air flow past vehicle.
The systems of the present application can extend the range of existing electric or hybrid and autonomous vehicles. In certain embodiments, the systems of the present application can extend the range of an electric car by as much as 200% or more. Additionally, the systems of the present application can reduce the need for as much as 50% of the number of batteries that are currently required for electric cars, thereby allowing for a lighter, more efficient, and more inexpensive vehicle. In certain embodiments, the system can use the electric vehicle's speed to power the on-board recharger, power the vehicle, and re-charge the batteries while driving. The systems of the present application also eliminate the need for blade braking and cut-out, and is capable of operating at speeds in excess of 80 to 100 mph. In certain embodiments, the system can be made of lightweight materials, thus contributing to the overall reduction in vehicle weight.
The referenced wind-powered charging systems and methods for an electric vehicle are now described more fully with reference to the accompanying drawings, in which one or more illustrated embodiments and/or arrangements of the systems and methods are shown. The systems and methods are not limited in any way to the illustrated embodiments and/or arrangements as the illustrated embodiments and/or arrangements described below are merely exemplary of the systems and methods, which can be embodied in various forms, as appreciated by one skilled in the art. Therefore, it is to be understood that any structural and functional details disclosed herein are not to be interpreted as limiting the systems and methods, but rather are provided as a representative embodiment and/or arrangement for teaching one skilled in the art one or more ways to implement the systems and methods. Furthermore, the terms and phrases used herein are not intended to be limiting, but rather are to provide an understandable description of the systems and methods.
An exemplary electric vehicle comprising a wind-powered regenerative charging system of the present application is shown in
After entering the one or more intake ports 130, the air flow 105 is directed to a wind turbine 135. In the embodiment
As shown in
A side view of an exemplary wind turbine and alternator structure of the wind-powered charging system is shown at
The air flow 105 passing through the intake port 130 causes the blades 145 of the turbine 135 to rotate. Because the blades 145 are disposed on the inner tube 150, the inner tube 150 and the plurality of magnets 155 also rotate. While the inner tube 150 (including blades 145 and magnets 155) rotates in response to the air flow 105, the hub 160 and the magnetic coils 165 remain stationary. In one or more embodiments, the wind turbine 135 can comprise ball bearings (not shown) that allow the inner tube 150 to rotate around the hub 160.
The rotating magnets 155 and the stationary magnetic coils 165 make up the self-contained alternator structure. As such, the rotation of the magnets 155 around the magnetic coils 165 results in the creation of an electromagnetic field and, subsequently, the generation of an electric current (e.g., AC or DC electricity) in the magnetic coils 165. The electric current generated in the coils 165 can then be harnessed by the system (e.g., using connective wiring connected to the coils 165), and used to charge the battery of the electric vehicle, as explained below with reference to
Further, it should be understood that the dimensions of the wind turbine system, including the number of intake and exhaust ports, the size of the one or more wind turbines, the number of batteries, and voltages of those batteries, are flexible and are determined at least in part by the vehicle's power needs and the vehicle's design. Power output is of the wind turbine system is determined at least in part by the length of the intake port and exhaust vessels, air flow speed, and blade RPMs. In at least one preferred embodiment, the wind turbine system of the present application is designed to operate at high RPMs. Finally, the wind turbine system of the present application, in certain embodiments, can be contained within one or more tubes separating the system, in whole or in part, from the other components of the vehicle.
The subject matter described above is provided by way of illustration only and should not be construed as limiting. The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the invention. As used herein, the singular forms “a”, “an” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. It will be further understood that the terms “comprises” and/or “comprising”, when used in this specification, specify the presence of stated features, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, and/or groups thereof.
Also, the phraseology and terminology used herein is for the purpose of description and should not be regarded as limiting. The use of “including,” “comprising,” or “having,” “containing,” “involving,” and variations thereof herein, is meant to encompass the items listed thereafter and equivalents thereof as well as additional items.
Further, various modifications and changes can be made to the subject matter described herein without following the example embodiments and applications illustrated and described, and without departing from the true spirit and scope of the present invention.
This application is based on and claims priority to U.S. Provisional Patent Application 62/342,042, filed May 26, 2016, the entire contents of which is incorporated by reference herein as if expressly set forth in its respective entirety herein.
Number | Date | Country | |
---|---|---|---|
62342042 | May 2016 | US |