The present disclosure relates in general to wind turbine rotor blades, and more particularly to wind turbine rotor blade components and methods of manufacturing wind turbine rotor blades and components thereof.
Wind power is considered one of the cleanest, most environmentally friendly energy sources presently available, and wind turbines have gained increased attention in this regard. A modern wind turbine typically includes a tower, a generator, a gearbox, a nacelle, and one or more rotor blades. The rotor blades capture kinetic energy of wind using known foil principles. The rotor blades transmit the kinetic energy in the form of rotational energy so as to turn a shaft coupling the rotor blades to a gearbox, or if a gearbox is not used, directly to the generator. The generator then converts the mechanical energy to electrical energy that may be deployed to a utility grid.
The rotor blades generally include a suction side shell and a pressure side shell typically formed using molding processes that are bonded together at bond lines along the leading and trailing edges of the blade. Further, the pressure and suction shells are relatively lightweight and have structural properties (e.g., stiffness, buckling resistance and strength) which are not configured to withstand the bending moments and other loads exerted on the rotor blade during operation. Thus, to increase the stiffness, buckling resistance and strength of the rotor blade, the body shell is typically reinforced using one or more structural components (e.g. opposing spar caps with a shear web configured therebetween) that engage the inner pressure and suction side surfaces of the shell halves. The spar caps are typically constructed of various materials, including but not limited to glass fiber laminate composites and/or carbon fiber laminate composites. The shell of the rotor blade is generally built around the spar caps of the blade by stacking layers of fiber fabrics in a shell mold. The layers are then typically infused together, e.g. with a thermoset resin.
Conventional blade manufacturing of large rotor blades involve high labor costs, slow through put, and low utilization of expensive mold tooling. Further, the blade molds can be expensive to customize.
Thus, methods for manufacturing rotor blades may include forming the rotor blades in segments. The blade segments may then be assembled to form the rotor blade. For example, some modern rotor blades have a modular panel configuration. Thus, the various blade components of the modular blade can be constructed of varying materials based on the function and/or location of the blade component.
Thus, the art is continually seeking methods of manufacturing wind turbine rotor blades and components thereof.
Aspects and advantages of the invention will be set forth in part in the following description, or may be obvious from the description, or may be learned through practice of the invention.
In one aspect, the present disclosure is directed to a method of manufacturing a rotor blade segment of a wind turbine. The rotor blade segment has a seamless leading edge surface. The method includes providing a generally flat fiber-reinforced outer skin. The generally flat fiber-reinforced outer skin defines a continuous outer surface. The continuous outer surface includes a pressure side surface extending between a pressure side aft edge and a pressure side forward edge, a suction side surface extending between a suction side forward edge and a suction side aft edge, and the seamless leading edge surface extending between the pressure side forward edge and the suction side forward edge. The method also includes forming the fiber-reinforced outer skin into a desired shape corresponding to a contour of the outer surface of the rotor blade. Further, the method includes folding the fiber-reinforced outer skin about the seamless leading edge surface. After folding the fiber-reinforced outer skin, the pressure side surface is positioned opposite the suction side surface and the pressure side aft edge is proximate the suction side aft edge.
In another aspect, the present disclosure is directed to a method of manufacturing a rotor blade segment of a wind turbine. The rotor blade segment has a seamless leading edge surface. The method includes forming an outer skin of the rotor blade segment. The outer skin defines a continuous outer surface. The continuous outer surface includes a pressure side surface extending between a pressure side aft edge and a pressure side forward edge, a suction side surface extending between a suction side forward edge and a suction side aft edge, and the seamless leading edge surface extending between the pressure side forward edge and the suction side forward edge. The method also includes forming at least one three-dimensional reinforcement structure on an inner surface of the outer skin and folding the outer skin around the at least one three-dimensional reinforcement structure. After folding the outer skin, the pressure side surface is positioned opposite the suction side surface and the pressure side aft edge is proximate the suction side aft edge.
In another aspect, the present disclosure is directed to a rotor blade of a wind turbine. The rotor blade includes a main blade structure extending between a root section and a tip section. The root section is configured to be mounted to a rotor hub of the wind turbine. The rotor blade also includes at least one rotor blade segment mounted over the main blade structure between the root section and the tip section. The at least one rotor blade segment includes an outer skin. The outer skin defines a continuous outer surface of the rotor blade segment. The continuous outer surface includes a pressure side surface extending between a pressure side aft edge and a pressure side forward edge, a suction side surface extending between a suction side forward edge and a suction side aft edge, and a seamless leading edge surface extending between the pressure side forward edge and the suction side forward edge.
These and other features, aspects and advantages of the present invention will become better understood with reference to the following description and appended claims. The accompanying drawings, which are incorporated in and constitute a part of this specification, illustrate embodiments of the invention and, together with the description, serve to explain the principles of the invention.
A full and enabling disclosure of the present invention, including the best mode thereof, directed to one of ordinary skill in the art, is set forth in the specification, which makes reference to the appended figures, in which:
Reference now will be made in detail to embodiments of the invention, one or more examples of which are illustrated in the drawings. Each example is provided by way of explanation of the invention, not limitation of the invention. In fact, it will be apparent to those skilled in the art that various modifications and variations can be made in the present invention without departing from the scope or spirit of the invention. For instance, features illustrated or described as part of one embodiment can be used with another embodiment to yield a still further embodiment. Thus, it is intended that the present invention covers such modifications and variations as come within the scope of the appended claims and their equivalents.
Generally, the present disclosure is directed to methods for manufacturing wind turbine rotor blades and components thereof using automated deposition of materials via technologies such as 3-D Printing, additive manufacturing, automated fiber deposition, as well as other techniques that utilize computer numeric control (“CNC”) and multiple degrees of freedom to deposit material. Thus, the methods described herein provide many advantages not present in the prior art. For example, the methods of the present disclosure provide the ability to easily customize blade structures having various curvatures, aerodynamic characteristics, strengths, stiffness, etc. As such, the printed structures of the present disclosure can be designed to match the stiffness and/or buckling resistance of existing sandwich panels rotor blades. More specifically, the printed structures typically contain hollow structures, which allow the printed structures to be less limited in height because the structures are not completely filled with foam and infusion resin, which is typical for conventional sandwich panels. As such, the rotor blades and components thereof of the present disclosure can be more easily customized based on the local buckling resistance needed. For example, if there is an area of high buckling in the structural analysis, the rib and/or stringer structure of the rotor blade can be printed in a tighter pattern or taller pattern or both to alleviate the area of concern, while using a more open or shorter structure in areas of reduced buckling issues. Further, if desirable, the structure can be built to connect or abut against a structure on the opposite side of the rotor blade in select areas. As such, the methods of the present disclosure are also useful for intentionally allowing less buckling resistance in the rotor blades in select areas to allow buckling during extreme gust events to promote load shedding.
In addition, the methods of the present disclosure provide a high level of automation, faster throughput, and reduced tooling costs and/or higher tooling utilization. Further, the rotor blades of the present disclosure may not require adhesives, especially those produced with thermoplastic materials, thereby eliminating cost, quality issues, and extra weight associated with bond paste.
Referring now to the drawings,
Referring now to
The thermoplastic rotor blade components and/or materials as described herein generally encompass a plastic material or polymer that is reversible in nature. For example, thermoplastic materials typically become pliable or moldable when heated to a certain temperature and returns to a more rigid state upon cooling. Further, thermoplastic materials may include amorphous thermoplastic materials and/or semi-crystalline thermoplastic materials. For example, some amorphous thermoplastic materials may generally include, but are not limited to, styrenes, vinyls, cellulosics, polyesters, acrylics, polysulphones, and/or imides. More specifically, exemplary amorphous thermoplastic materials may include polystyrene, acrylonitrile butadiene styrene (ABS), polymethyl methacrylate (PMMA), glycolised polyethylene terephthalate (PET-G), polycarbonate, polyvinyl acetate, amorphous polyamide, polyvinyl chlorides (PVC), polyvinylidene chloride, polyurethane, or any other suitable amorphous thermoplastic material. In addition, exemplary semi-crystalline thermoplastic materials may generally include, but are not limited to polyolefins, polyamides, fluoropolymer, ethyl-methyl acrylate, polyesters, polycarbonates, and/or acetyls. More specifically, exemplary semi-crystalline thermoplastic materials may include polybutylene terephthalate (PBT), polyethylene terephthalate (PET), polypropylene, polyphenyl sulfide, polyethylene, polyamide (nylon), polyetherketone, or any other suitable semi-crystalline thermoplastic material.
Further, the thermoset components and/or materials as described herein generally encompass a plastic material or polymer that is non-reversible in nature. For example, thermoset materials, once cured, cannot be easily remolded or returned to a liquid state. As such, after initial forming, thermoset materials are generally resistant to heat, corrosion, and/or creep. Example thermoset materials may generally include, but are not limited to, some polyesters, some polyurethanes, esters, epoxies, or any other suitable thermoset material.
In addition, as mentioned, the thermoplastic and/or the thermoset material as described herein may optionally be reinforced with a fiber material, including but not limited to glass fibers, carbon fibers, polymer fibers, wood fibers, bamboo fibers, ceramic fibers, nanofibers, metal fibers, or similar or combinations thereof. In addition, the direction of the fibers may include multi-axial, unidirectional, biaxial, triaxial, or any other another suitable direction and/or combinations thereof. Further, the fiber content may vary depending on the stiffness required in the corresponding blade component, the region or location of the blade component in the rotor blade 16, and/or the desired weldability of the component.
More specifically, as shown, the main blade structure 15 may include any one of or a combination of the following: a pre-formed blade root section 20, a pre-formed blade tip section 22, one or more one or more continuous spar caps 48, 50, one or more shear webs 35 (
As illustrated in
In various embodiments, the rotor blade 16 may include more or fewer spar caps than the two spar caps 48 and 50 depicted in the illustrated example embodiments herein. For example, in some embodiments, the spar caps may include a pair of spar caps, each of which is a unitary monolithic structure extending from the root section 20 to the tip section 22. In other example embodiments, the spar caps may comprise a plurality of segments joined together, e.g., a first spar cap or set of spar caps formed in the blade root section 20, a second pair spar cap or set of spar caps formed in one or more intermediate segments 21, and a third spar cap or set of spar caps formed in the blade tip section 22. Thus, in certain embodiments, the blade root section 20 and the blade tip section 22 may be joined together via their respective spar caps.
The spar caps, e.g., 48, 50 may be configured to be engaged against opposing inner surfaces of the blade segments 21 of the rotor blade 16. Thus, the spar caps may generally be designed to control the bending stresses and/or other loads acting on the rotor blade 16 in a generally span-wise direction (a direction parallel to the span 23 of the rotor blade 16) during operation of a wind turbine 10. In addition, the spar caps may be designed to withstand the span-wise compression occurring during operation of the wind turbine 10.
The spar caps, e.g., 48, 50, may be constructed of any suitable materials, e.g., a thermoplastic or thermoset material or combinations thereof. Further, the spar caps may be pultruded from thermoplastic or thermoset resins. As used herein, the terms “pultruded,” “pultrusions,” or similar generally encompass reinforced materials (e.g. fibers or woven or braided strands) that are impregnated with a resin and pulled through a stationary die such that the resin cures or undergoes polymerization. As such, the process of manufacturing pultruded members is typically characterized by a continuous process of composite materials that produces composite parts having a constant cross-section. Thus, the pre-cured composite materials may include pultrusions constructed of reinforced thermoset or thermoplastic materials. Further, the spar caps may be formed of the same pre-cured composites or different pre-cured composites. In addition, the pultruded components may be produced from rovings, which generally encompass long and narrow bundles of fibers that are not combined until joined by a cured resin.
As shown in
In addition, as shown in
Referring now to
In some embodiments, the method of manufacturing a rotor blade segment 21 of a wind turbine 10 may include forming or providing an outer skin 28, which may be a generally flat fiber-reinforced outer skin 28. For example, the fiber-reinforced outer skin 28 may be a continuous, multi-axial (e.g. biaxial) fiber-reinforced thermoplastic or thermoset outer skin. The generally flat fiber-reinforced outer skin 28 may define a continuous outer surface 30 comprising a pressure side surface 44 extending between a pressure side aft edge 34 and a pressure side forward edge 36, a suction side surface 46 extending between a suction side forward edge 38 and a suction side aft edge 40, and a leading edge surface 42 extending between the pressure side forward edge 36 and the suction side forward edge 38. As used herein, the term “leading edge surface” refers to a surface which includes the leading edge 24 of the rotor blade segment 21 and extends between the pressure side surface 44 and the suction side surface 46.
In addition, in certain embodiments, the fiber-reinforced outer skin 28 may include continuous multi-axial fibers, such as biaxial fibers. Further, in particular embodiments, the method may include forming the outer skin 28 via at least one of injection molding, 3-D printing, 2-D pultrusion, 3-D pultrusion, thermoforming, vacuum forming, pressure forming, bladder forming, automated fiber deposition, automated fiber tape deposition, or vacuum infusion.
In some embodiments, the method may include forming at least one three-dimensional reinforcement structure 56 on an inner surface 32 of the outer skin 28. For example, forming the at least one three-dimensional reinforcement structure 56 may include printing and depositing the at least one three-dimensional reinforcement structure 56 via a computer numeric control device 300 (
In certain embodiments, the step of forming the outer skin 28 of the rotor blade segment 21 may include providing a generally flat fiber-reinforced outer skin, forcing the outer skin 28 into a desired shape corresponding to a contour of the outer surface 30 of the rotor blade segment 21, and maintaining the outer skin 28 in the desired shape during forming the at least one three-dimensional reinforcement structure 56. For example, forcing the outer skin 28 into a desired shape may include forming the outer skin 28 on a mold 100. For example, the outer skin 28 may be held in place while printing and depositing the reinforcement structure 56 on the inner surface 32 of the outer skin 28. As such, the outer skin 28 generally retains the desired shape when the outer skin 28 and the reinforcement structure 56 printed thereto are released. In particular, the outer skin 28 may generally retain the desired shape in at least areas where the reinforcement structure 56 was formed, e.g., printed and deposited.
In certain embodiments, the outer skin 28 may be forced into and maintained in the desired shape during printing and depositing via a tooling device. For example, in particular embodiments, the tooling device may include vacuum, one or more magnets, one or more mechanical devices, one or more adhesives, a heating system, a cooling system, or any combination thereof. The structure and function of such tooling devices are generally understood by those of skill in the art, as such, are not described in further detail herein.
Additionally, the method may include folding the outer skin 28 around the at least one three-dimensional reinforcement structure 56, for example along a folding direction F, as shown in
As shown in
In other embodiments, the mold 100 may not include the independent heater 102 and/or the method may not include activating the independent heater 102. For example, as illustrated in
As mentioned above, the fiber-reinforced outer skin 28 may be a multi-axial (e.g. biaxial) fiber-reinforced thermoplastic or thermoset outer skin. In addition, as shown, the outer surface 30 of the rotor blade segment 21 may be curved. In embodiments where the at least one three-dimensional reinforcement structure 56 is formed using a CNC device, the CNC device may be configured to print and deposit the three-dimensional reinforcement structure 56 onto an inner surface 32 of the fiber-reinforced outer skin 28. As such, the CNC device may be adapted to include a tooling path that follows a contour of the curved outer surface 30 of the rotor blade segment 21 such that the CNC device deposits the reinforcement structure 56 along the contour of the inner surface 32 of the outer skin 28. In particular embodiments, the CNC device may deposit the reinforcement structure 56 along the contour of the inner surface 32 in areas away from what will be leading edge 24, e.g., in areas of inner surface 32 which correspond to the pressure side surface 44 and/or the suction side surface 46. In areas of the inner surface 32 proximate the leading edge 24, a reinforcement may be built that has the final shape of the inner surface 32 after the outer surface 28 is bent around the structure 56, the final shape of the inner surface 32 may be seen, e.g., in
In some embodiments, the rotor blade segment 21 may include a bond cap 58. For example, the method may include adding a bond cap 58 between the at least one three-dimensional reinforcement structure 56 and the leading edge surface 42 prior to folding the outer skin 28. In some embodiments, the bond cap 58 may be a separate piece previously formed and inserted between the at least one three-dimensional reinforcement structure 56 and the leading edge surface 42. In other embodiments, forming the at least one three-dimensional reinforcement structure 56 may include forming the bond cap 58 proximate the leading edge surface 42 while forming the at least one three-dimensional reinforcement structure 56. For example, in embodiments where the reinforcement structure 56 is formed by printing and depositing, printing and depositing the at least one three-dimensional reinforcement structure 56 via a computer numeric control device onto the inner surface 32 of the outer skin 28 may also include printing and depositing the bond cap 58 in the same printing and depositing operation. Accordingly, the bond cap 58 may be integral with the at least one three-dimensional reinforcement structure 56.
As shown in
The gap G may aid in assembling the rotor blade segment 21 prior to joining the pressure side aft edge 34 and the suction side aft edge 40. For example, the segment 21 may be easily mounted to the main blade structure 15 by separating the pressure and suction side surfaces 44, 46 at the gap G, mounting the blade segment 21 over the one or more spar caps 48, 50, and securing the blade segment 21 to the one or more spar caps 48, 50, e.g., by welding the outer skin 28 to the one or more spar caps 48, 50, prior to joining the pressure side aft edge 34 and the suction side aft edge 40. Separating the pressure and suction side surfaces 44, 46 at the gap G may include moving the pressure side surface 44 and the suction side surface 46 farther apart such that the gap G expands. The outer skin 28 may be mounted over the structural element 15 of the rotor blade 16 while the gap G is expanded. In some embodiments, the pressure side aft edge 34 and the suction side aft edge 40 may be joined by welding the pressure side aft edge 34 and the suction side aft edge 40. In other example embodiments, the pressure aft edge 34 and the suction side aft edge 40 may be joined with an adhesive paste.
In another embodiment, the method may further include treating the inner surface 32 of the outer skin 28 to promote bonding between the outer skin 28 and the reinforcement structure 56. More specifically, in certain embodiments, the step of treating the inner surface 32 may include flame treating, plasma treating, chemical treating, chemical etching, mechanical abrading, embossing, elevating a temperature of at least areas to be printed on the outer skins 28, and/or any other suitable treatment method to promote bonding of the reinforcement structure 56 and the inner surface 32 of the outer skin 28. In additional embodiments, the method may include forming the outer skin 28 with more (or even less) matrix resin material on the inside surface 32 to promote said bonding.
In additional embodiments, the method may include varying the outer skin thickness and/or fiber content, as well as the fiber orientation. Further, the method may include varying the design of the spar caps 48, 50 and/or shear web 35 (e.g. width, height, etc.). For example, in some embodiments, the method may include printing taller reinforcement structures for the pressure side that bond (or abut against) taller structures of the suction side to create additional auxiliary type shear webs/spars depending on the design need.
In additional embodiments, the method may also include printing one or more features at the trailing and/or leading edges 24, 26 of the rotor blade segments that are configured to overlap, e.g. such as interlocking edges or snap fits. Further, the method may include printing the rotor blade segments to include features configured to align the spar caps therein.
When manufactured according to the methods shown and described herein, the rotor blade 16 may include a non-jointed, continuous blade surface constructed at least in part of a thermoplastic material. The non-jointed, continuous blade surface does not require bonding of multiple span-wise segments. For example, at least the leading edge surface 42 may be a non-jointed and continuous surface. In such embodiments, the rotor blade segment 21 may include a single joint 57 at the trailing edge 26. Thus, the single-jointed blade segment 21 only requires one joint instead of multiple joints.
This written description uses examples to disclose the invention, including the best mode, and also to enable any person skilled in the art to practice the invention, including making and using any devices or systems and performing any incorporated methods. The patentable scope of the invention is defined by the claims, and may include other examples that occur to those skilled in the art. Such other examples are intended to be within the scope of the claims if they include structural elements that do not differ from the literal language of the claims, or if they include equivalent structural elements with insubstantial differences from the literal languages of the claims.
Number | Name | Date | Kind |
---|---|---|---|
RE19412 | Zaparka | Jan 1935 | E |
2450440 | Mills | Oct 1948 | A |
2451131 | Vidal | Oct 1948 | A |
2503450 | Nebesar | Apr 1950 | A |
3000446 | Warnken | Sep 1961 | A |
3093219 | Ramme | Jun 1963 | A |
3137887 | Mannino et al. | Jun 1964 | A |
3321019 | Dmitroff et al. | May 1967 | A |
3528753 | Dutton et al. | Sep 1970 | A |
3586460 | Toner | Jun 1971 | A |
3956564 | Hillig | May 1976 | A |
4319872 | Lupke | Mar 1982 | A |
4329119 | Baskin | May 1982 | A |
4474536 | Gougeon et al. | Oct 1984 | A |
4626172 | Mouille et al. | Dec 1986 | A |
4718844 | Dickhut | Jan 1988 | A |
5059109 | Dickhut | Oct 1991 | A |
5088665 | Vijgen et al. | Feb 1992 | A |
5346367 | Doolin et al. | Sep 1994 | A |
6264877 | Pallu De La Barriere | Jul 2001 | B1 |
6890152 | Thisted | May 2005 | B1 |
7059833 | Stiesdal et al. | Jun 2006 | B2 |
7364407 | Grabau | Apr 2008 | B2 |
7458777 | Herr | Dec 2008 | B2 |
7637721 | Driver et al. | Dec 2009 | B2 |
7976275 | Miebach et al. | Jul 2011 | B2 |
7988421 | Bakhuis et al. | Aug 2011 | B2 |
8007624 | Stiesdal | Aug 2011 | B2 |
8062728 | De Beats | Nov 2011 | B2 |
8083488 | Fritz | Dec 2011 | B2 |
8092187 | Bell | Jan 2012 | B2 |
8162590 | Haag | Apr 2012 | B2 |
8273806 | Guadagno et al. | Sep 2012 | B2 |
8317479 | Vronsky et al. | Nov 2012 | B2 |
8376450 | Long et al. | Feb 2013 | B1 |
8540491 | Gruhn | Sep 2013 | B2 |
8602761 | Arrizabalaga | Dec 2013 | B2 |
8657581 | Pilpel et al. | Feb 2014 | B2 |
8673106 | Jolley et al. | Mar 2014 | B1 |
8678746 | Haag | Mar 2014 | B2 |
8708691 | Matsen et al. | Apr 2014 | B2 |
8747098 | Johnson et al. | Jun 2014 | B1 |
8865798 | Merle et al. | Oct 2014 | B2 |
8877116 | Grabau | Nov 2014 | B2 |
8932024 | Hayashi et al. | Jan 2015 | B2 |
8961142 | Wansink | Feb 2015 | B2 |
8992813 | Robbins et al. | Mar 2015 | B2 |
9090027 | Sutton | Jul 2015 | B2 |
9150721 | Bateman et al. | Oct 2015 | B2 |
9377005 | Yarbrough et al. | Jun 2016 | B2 |
9434142 | Levit | Sep 2016 | B2 |
9458821 | Jacobsen et al. | Oct 2016 | B2 |
9512818 | Richtman | Dec 2016 | B2 |
9719489 | Stewart | Aug 2017 | B2 |
10273935 | Albert | Apr 2019 | B2 |
20040253114 | Gunneskov et al. | Dec 2004 | A1 |
20070065290 | Herr | Mar 2007 | A1 |
20070077150 | Llorente Gonzalez | Apr 2007 | A1 |
20070107189 | Prichard | May 2007 | A1 |
20090068017 | Rudling | Mar 2009 | A1 |
20090074585 | Koegler et al. | Mar 2009 | A1 |
20090140527 | Pawar | Jun 2009 | A1 |
20090148300 | Driver et al. | Jun 2009 | A1 |
20090155084 | Livingston et al. | Jun 2009 | A1 |
20090301648 | Hogg | Dec 2009 | A1 |
20100047070 | Slot | Feb 2010 | A1 |
20100121475 | Lyons | May 2010 | A1 |
20100135806 | Benito | Jun 2010 | A1 |
20100135815 | Bagepalli | Jun 2010 | A1 |
20100296940 | Zuteck | Nov 2010 | A1 |
20100296941 | Zuteck | Nov 2010 | A1 |
20110018282 | Hayashi et al. | Jan 2011 | A1 |
20110076149 | Santiago et al. | Mar 2011 | A1 |
20110097211 | Rudling | Apr 2011 | A1 |
20110097326 | Luehrsen | Apr 2011 | A1 |
20110100540 | Mathew | May 2011 | A1 |
20110103965 | Matthew | May 2011 | A1 |
20110135467 | Saddoughi et al. | Jun 2011 | A1 |
20110142635 | Frizt | Jun 2011 | A1 |
20110142667 | Miebach et al. | Jun 2011 | A1 |
20110142668 | Rao | Jun 2011 | A1 |
20110142670 | Pilpel | Jun 2011 | A1 |
20110176928 | Jensen | Jul 2011 | A1 |
20110200444 | Garcia | Aug 2011 | A1 |
20110223028 | Stege et al. | Sep 2011 | A1 |
20110243736 | Bell | Oct 2011 | A1 |
20110243750 | Gruhn | Oct 2011 | A1 |
20110266721 | Song et al. | Nov 2011 | A1 |
20110268558 | Driver | Nov 2011 | A1 |
20110286853 | Kristensen | Nov 2011 | A1 |
20120009069 | Grove-Nielsen | Jan 2012 | A1 |
20120027590 | Bonnet | Feb 2012 | A1 |
20120027610 | Yarbrough | Feb 2012 | A1 |
20120027612 | Yarbrough | Feb 2012 | A1 |
20120027613 | Yarbrough | Feb 2012 | A1 |
20120121430 | Olsen et al. | May 2012 | A1 |
20120128810 | Arriola Arizabalaga et al. | May 2012 | A1 |
20120134848 | Ramirez Jimenez et al. | May 2012 | A1 |
20120138218 | Dean et al. | Jun 2012 | A1 |
20120183408 | Noerlem | Jul 2012 | A1 |
20120186730 | Shindo | Jul 2012 | A1 |
20120263913 | Karem | Oct 2012 | A1 |
20130108455 | Quiring et al. | May 2013 | A1 |
20130164133 | Grove-Nielsen | Jun 2013 | A1 |
20130186558 | Comb | Jul 2013 | A1 |
20130241117 | Lind | Sep 2013 | A1 |
20140072715 | Jones et al. | Mar 2014 | A1 |
20140178204 | Livingston et al. | Jun 2014 | A1 |
20140186175 | Baehmann et al. | Jul 2014 | A1 |
20140205454 | Giovannetti et al. | Jul 2014 | A1 |
20140295187 | Jacobsen | Oct 2014 | A1 |
20140322023 | Tapia | Oct 2014 | A1 |
20140328692 | Riddell et al. | Nov 2014 | A1 |
20140334930 | Rob | Nov 2014 | A1 |
20150224759 | Boon | Aug 2015 | A1 |
20150247487 | Oerlemans et al. | Sep 2015 | A1 |
20150308404 | Dahl | Oct 2015 | A1 |
20150316028 | Brekenfeld | Nov 2015 | A1 |
20150322920 | Jones | Nov 2015 | A1 |
20160023433 | Langone | Jan 2016 | A1 |
20160052173 | Hunter | Feb 2016 | A1 |
20160107397 | Schibsbye | Apr 2016 | A1 |
20160146019 | Pizano et al. | May 2016 | A1 |
20160168997 | Garm | Jun 2016 | A1 |
20160263844 | Smith | Sep 2016 | A1 |
20160297145 | Wu | Oct 2016 | A1 |
20160319801 | Smith | Nov 2016 | A1 |
20160327019 | Tobin et al. | Nov 2016 | A1 |
20160327020 | Tobin et al. | Nov 2016 | A1 |
20160327021 | Tobin et al. | Nov 2016 | A1 |
20160354984 | Hedges | Dec 2016 | A1 |
20160377050 | Caruso | Dec 2016 | A1 |
20160377051 | Caruso et al. | Dec 2016 | A1 |
20160377052 | Caruso et al. | Dec 2016 | A1 |
20170015066 | Herrmann | Jan 2017 | A1 |
20170021575 | Hansen et al. | Jan 2017 | A1 |
20170022821 | Ferber | Jan 2017 | A1 |
20170030330 | Caruso | Feb 2017 | A1 |
20170050372 | Nielsen et al. | Feb 2017 | A1 |
20170051718 | Klitgaard | Feb 2017 | A1 |
20170057158 | Caruso et al. | Mar 2017 | A1 |
20170058862 | Caruso et al. | Mar 2017 | A1 |
20170058865 | Caruso et al. | Mar 2017 | A1 |
20170058866 | Caruso | Mar 2017 | A1 |
20170074236 | Hynum et al. | Mar 2017 | A1 |
20170074237 | Caruso et al. | Mar 2017 | A1 |
20170074238 | Tobin et al. | Mar 2017 | A1 |
20170074240 | Caruso et al. | Mar 2017 | A1 |
20170082087 | Yarbrough | Mar 2017 | A1 |
20170082088 | Yarbrough et al. | Mar 2017 | A1 |
20170100902 | Asmatulu et al. | Apr 2017 | A1 |
20170113265 | Slavens et al. | Apr 2017 | A1 |
20170122287 | Dobbe et al. | May 2017 | A1 |
20170145990 | Drack et al. | May 2017 | A1 |
20170175534 | Ferber | Jun 2017 | A1 |
20170204833 | Albert et al. | Jul 2017 | A1 |
20170225362 | Anthony et al. | Aug 2017 | A1 |
20170252966 | Susnjara | Sep 2017 | A1 |
20170306766 | Munzer | Oct 2017 | A1 |
20180135602 | Tobin et al. | May 2018 | A1 |
20180156190 | Johnson | Jun 2018 | A1 |
20180216601 | Yarbrough | Aug 2018 | A1 |
20180223794 | Tobin et al. | Aug 2018 | A1 |
20180229452 | Ogale | Aug 2018 | A1 |
20180264749 | Albert | Sep 2018 | A1 |
20180283349 | Wardropper | Oct 2018 | A1 |
20180311927 | Tyan | Nov 2018 | A1 |
20190001589 | Salimi | Jan 2019 | A1 |
20190032491 | Nissen et al. | Jan 2019 | A1 |
20190153994 | Tobin | May 2019 | A1 |
20190178227 | Hawkins | Jun 2019 | A1 |
20190195191 | Girolamo | Jun 2019 | A1 |
20190291861 | McIntyre et al. | Sep 2019 | A1 |
20190293049 | Roberts | Sep 2019 | A1 |
Number | Date | Country |
---|---|---|
101906251 | Dec 2010 | CN |
103358564 | Oct 2013 | CN |
204488065 | Jul 2015 | CN |
104955278 | Sep 2015 | CN |
107187020 | Sep 2018 | CN |
0435466 | Jul 1991 | EP |
2204577 | Jul 2010 | EP |
2653717 | Oct 2013 | EP |
3037655 | Jun 2016 | EP |
3138697 | Aug 2017 | EP |
2371893 | Nov 2012 | ES |
H07102609 | Nov 1995 | JP |
2000 317972 | Nov 2000 | JP |
2007-009926 | Jan 2007 | JP |
2007092716 | Apr 2007 | JP |
2012 158151 | Aug 2012 | JP |
2016 032929 | Mar 2016 | JP |
101 520 898 | May 2015 | KR |
WO2006039953 | Apr 2006 | WO |
WO2010025830 | Mar 2010 | WO |
WO2011088835 | Jul 2011 | WO |
WO2011098785 | Aug 2011 | WO |
WO2012076168 | Jun 2012 | WO |
WO2013023745 | Feb 2013 | WO |
WO2013178624 | Dec 2013 | WO |
WO2015015202 | Feb 2015 | WO |
WO2017092766 | Jun 2017 | WO |
WO2018015250 | Jan 2018 | WO |
Entry |
---|
U.S. Appl. No. 15/351,486, filed Nov. 15, 2016. |
U.S. Appl. No. 15/424,055, filed Feb. 3, 2017. |
Patent Cooperation Treaty; PCT International Search Report; International Application No. PCT/US2018/059374; dated Jun. 26, 2019. |
Patent Cooperation Treaty; PCT Written Opinion of the International Searching Authority; International Application No. PCT/US2018/059374; dated Jun. 26, 2019. |
CGTech VERICUT, Automated Fibre Placement—wind blade: VERICUT Composite CNC simulation, Sep. 16, 2015, YouTube, retrieved from the Internet on Sep. 28, 2019, URL: https://youtu.be/xFNtTE82DiU (Year: 2015). |
Thamizhisai Periyaswamy, Karthikeyan Balasubramanian, Christopher Pastore, “Novel characterization method for fibrous materials using non-contact acoustics: Material properties revealed by ultrasonic perturbations”, Sep. 16, 2014, Elsevier, Ultrasonics 56, 261-369 (Year: 2014). |
Zhai, Yuwei et. al., Additive Manufacturing: Making Imagination the Major Limitation, Journal of Metals, vol. 66, No. 5, Springer, NY, Mar. 11, 2014. pp. 808-816. |
Patlolla, New progress in self-healing technology of composite wind turbine blades, Department of Mechanical Engineering, Wichita State Univeristy, https://soar.wichita.edu/handle/10057/5496, Feb. 16, 2012, (Abstract Only). |
Matt, Development of Novel Self-Healing Polymer Composites for Use in Wind Turbine Blades http://energyresources.asmedigitalcollection.asme.org/article.aspx?article=2174064, The American Society of Mechanical Engineers, Journal of Energy Resources Technology, vol. 137, Issue 5, Sep. 1, 2015 (Abstract Only). |
Teuwen et al., Vacuum infused Thermoplastic Composites for Wind Turbine Blades, 2008 Wind Turbine Blade Workshop—Sandia National Laboratories, Jun. 3, 2008, 22 pages. |
Number | Date | Country | |
---|---|---|---|
20190153996 A1 | May 2019 | US |