1. Technical Field
The subject matter described here generally relates to wind turbines, and, more particularly, to a method and apparatus for quickly restarting wind turbines.
2. Related Art
A wind turbine is a machine for converting the kinetic energy in wind into mechanical energy. If the mechanical energy is used directly by the machinery, such as to pump water or to grind wheat, then the wind turbine may be referred to as a “windmill.” Similarly, if the mechanical energy is converted to electricity, then the machine may also be referred to as a “wind generator” or “wind power plant.”
Wind turbines are typically categorized according to the vertical or horizontal axis about which the blades rotate. One so-called horizontal-axis wind generator is schematically illustrated in
The blades 10 generate lift and capture momentum from moving air that is them imparted to the rotor 9. Each blade 10 is typically secured to the hub 9 at its “root” end, and then “spans” radially “outboard” to a free, “tip” end. The front, or “leading edge,” of the blade 10 connects the forward-most points of the blade that first contact the air. The rear, or “trailing edge,” of the blade 10 is where airflow that has been separated by the leading edge rejoins after passing over the suction and pressure surfaces of the blade. A “chord line” connects the leading and trailing edges of the blade 10 in the direction of the typical airflow across the blade and roughly defines the plane of the blade.
“Angle of attack” is a term that is used in to describe the angle between the chord fine of the blade 10 and the vector representing the relative motion between the blade and the air. “Pitching” refers to rotating the angle of attack of the entire blade 10 into or out of the wind in order to control the rotational speed and/or absorption of power from the wind. For example, pitching the blade “towards feather” rotates of the leading edge of the blade 10 into the wind, while pitching the blades “towards stall” rotates the leading edge of the blade out of the wind.
For so-called “pitch controlled” wind turbines, the pitch may be adjusted each time the wind changes in order to maintain the rotor blades at the optimum angle and maximize power output for all wind speeds. For example, the control system 16 may check the power output of the turbine 2 several times per second. When the power output becomes too high, the control system 16 then sends a signal to the blade pitch mechanism which causes the blades 10 to be pitched slightly (or entirely) out of the wind. The blades 10 are then turned back into the wind when the wind speed slows down.
Commonly-assigned U.S. Pat. No. 7,126,236 discloses “Methods and Apparatus for Pitch Control Power Conversion” and is reproduced in
The control system 16 provides control signals to the variable blade pitch drive or actuator 114 to control the pitch of blades 10 (
The electricity generated by one or more of these wind turbines 2 in a wind park or “wind farm” is normally fed into an electric power transmission network that is typically operated by a utility company. Different types of wind turbine generators behave differently during transmission grid disturbances, including restarting of the turbines. Transmission system operators will therefore require a wind farm developer to follow a “grid code” that specifies the requirements for interconnection to the transmission grid. The grid code will typically specify a variety of operating parameter tolerances in areas such as power factor, frequency, voltage and current, and the requirements for parameters during various transmission events such as low voltage ride through.
Various power quality issues arise when a wind generator is connected or reconnected to a power distribution network. For example, the generator 14 may be initially operated as a motor in order to bring the rotor up to the appropriate speed. During that time an in-rush current to the generator 14 may cause a voltage dip on the power distribution network. Even after the generator 14 is motoring at the appropriate speed, voltage, current, real and reactive power, and/or frequency variations may occur in the distribution networks when the turbine 2 is connected (or “cut in”) to the network as a generator and/or operated at less than full speed.
For this reason, a typical procedure for staring a wind turbine 2 may involve starting with the blades at an initial “feather” position of about 85 degrees with the generator rotating at less than 60 rpm. The blades are then pitched to a “spin up” position of about 65 degrees for at least 60 seconds until the generator reaches about 350 rpm. Around that speed, the blades are pitched to a “spin up” position of about 4 degrees for about another 60 seconds until the generator reaches a speed of about 1000 rpm. At that speed the generator has reached a “cut in” state and is connected to the network and the controller 16 is allowed to control the blade pitch for efficient power production. In about 25 seconds the generator will then reach a “load” state and attain its normal operating speed of 1440 rpm. In order to maintain the grid code requirements, such startup procedures can require the wind turbine 2 to be unproductive for three minutes or more each time the turbine is reconnected to the grid.
These and other drawbacks associated with such conventional approaches are addressed here in by providing, in various embodiments, a method of providing power from a wind generator, including sending a request to supply power to an operator of a power distribution network: receiving an authorization to supply power from the power distribution network operator; and connecting the wind generator to the power distribution network in response to the authorization to supply power.
Various aspects of this technology will now be described with reference to the following figures (“FIGs.”) which are not necessarily drawn to scale, but use the same reference numerals to designate corresponding parts throughout each of the several views.
In
Power is provided from one or more wind turbines or wind generators 2 by sending a sending a request 306 to supply power to an operator 304 of a power distribution network. The request may be sent automatically by the wind turbine control system 16, by a wind farm controller 312 for multiple wind turbines (shown in
For example, the request 306 will indicate and/or warn the operator 304 that grid fluctuations are likely to occur when the wind turbine 2 is connected to the power distribution network and/or otherwise brought on-line. In this regard, the request 306 may include at least one capacity parameter for the wind generator, such as, but not limited to, a real and/or reactive power production capacity like kilowatts or kilovolt amperes. Alternatively, or in addition, the request 306 may include one or more parameters indicating the current operational status of the wind turbine 2, such as arriving at a cut in or load state. For example, status parameters may indicate that the generator 14 is ready to be connected to the power distribution network such as, but not limited to, that it is operating at a minimum or other predetermined speed, power, frequency, phase angle, voltage, current, and/or other condition.
Multiple and/or consecutive requests 306 may also be sent to, and received by, the operator 304 of the power distribution network with repeated information, updated information, historical information, and/or predicted information regarding the capacity, status, and/or other information concerning the wind turbine 2. For example, as illustrated in
When any of the requests 306 and 308 are sent by the wind turbine 2, and/or received by the operator 304, the operator of the power distribution network may send, and the wind turbine 2 may receive, an authorization 310 to supply power from the power distribution network operator. The authorization 310 may be sent automatically by the power distribution network and/or via an intermediary such as a network operator and/or electrical power broker, system administrator, or regulator. For example, the authorization 310 may include an immediate or future time to connect to the power distribution network. Information concerning how to connect to the power distribution network, such as current grid code requirements, may also be included in the authorization. Multiple and/or consecutive authorizations 310 may also be sent to, and received by, the wind turbine 2 of the power distribution network with repeated information, updated information, historical information, and/or predicted information regarding the capacity, status, grid code and/or other information concerning the power distribution network. In this way, the wind turbine 2 and/or its operator may be informed that the wind turbine can supply power without upsetting the power distribution network.
Various embodiments of the technology described above can be implemented in hardware, software, firmware, or a combination thereof. For example, any such software or firmware may be stored in a memory and that is executed by a suitable instruction execution system. If implemented in hardware, various technologies may be used, including discrete logic circuit(s) having logic gates for implementing logic functions upon data signals, an application specific integrated circuit (ASIC) having appropriate combinational logic gates, a programmable gate array(s) (PGA), a field programmable gate array (FPGA), etc. Any suitable medium and/or technologies may also be used to communicate the requests 306 and 308, and authorizations 310, including wired and/or wireless systems such as telegraphic, telephonic, radio, optical, Internet and other computer networks, and powerline communication systems.
The flow chart of
The technology described above offers various advantages over conventional approaches. For example, the wind turbine 2 may be brought up to “cut in” speed with stored energy, and/or energy from the power distribution network, before (or after) an authorization 310 is received. The wind turbine 2 may therefore be connected to the power distribution network more quickly and sooner to when it is actually needed. If the power distribution network is not capable of accepting power from the wind turbine 2, then the turbine does not need to be spun up and/or run up to the appropriate speed for cut in connection to the network before power is needed. Consequently, available wind power supplies are more likely to match power demand. Upsets to the power distribution network may also be minimized or avoided with appropriate warning to and/or authorization from the network operator. could be minimized
Any process descriptions or blocks in flow charts should be understood as representing modules, segments, or portions of code which include one or more executable instructions for implementing specific logical functions or steps in the process, and alternate implementations are included within the scope of the preferred embodiment of the present invention in which functions may be executed out of order from that shown or discussed, including substantially concurrently or in reverse order, depending on the functionality involved, as would be understood by those reasonably skilled in the art of the present invention.
It should also be emphasized that the embodiments described above, and particularly any “preferred” embodiments, are merely examples of various implementations that have been set forth here to provide a clear understanding of various aspects of this technology. One of ordinary skill will be able to alter many of these embodiments without substantially departing from scope of protection defined solely by the proper construction of the following claims.