The present disclosure is directed to a wind turbine system and, more particularly, to a wind turbine system that includes a hydraulic system for the storage of captured wind energy.
Recently, wind turbines have received increased attention as an environmentally safe and a relatively inexpensive alternative energy source. With this growing interest, considerable efforts have been made to develop wind turbines that are reliable and efficient.
Wind turbines use wind energy to generate electricity. A conventional wind turbine includes wind driven turbine blades connected to a rotor mounted on a tower or platform. The rotor may turn up to about 60 rpm in a steady wind of about 20 mph. The rotor is typically connected to a generator through a transmission. Typical generators include synchronous or asynchronous generators and require a constant input shaft speed of about 1200 to about 1800 rpm to produce power. Although variable speed generators are available, the power output of a variable speed generator must be conditioned before it can be fed into a utility power grid. Low wind conditions can cause interruptions in electricity generation by wind turbines. For example, such conditions can cause a significant decrease in the quality of the electricity being generated.
What is needed is a wind turbine system that offers an efficient transmission combined with a potential reduction in the duration or frequency of interruptions in the generation of grid-quality electricity caused by temporary low wind conditions.
The object of the present disclosure is to provide a wind turbine having a hydraulic pump that provides pressurized fluid to a motor to generate electricity.
According to a first embodiment of the disclosure, a wind turbine system is disclosed that includes a hub, a shaft coupled to the hub, and a hydraulic pump disposed proximate the shaft and configured to provide a pressurized fluid to a motor.
According to a second embodiment of the disclosure, a method of generating electricity from wind power is disclosed that includes rotating a hub by wind energy, driving a pump disposed around a shaft coupled to the hub by rotating the hub to pressurize a fluid, and driving a motor with the pressurized fluid to generate electricity.
Further aspects of the method and system are disclosed herein. The features as discussed above, as well as other features and advantages of the present disclosure will be appreciated and understood by those skilled in the art from the following detailed description and drawings.
Wherever possible, the same reference numbers will be used throughout the drawings to refer to the same or like parts.
In some configurations and referring to
The rotation of the rotor 106 rotationally drives shaft 112 to provide mechanical energy to hydraulic pumping system 120 to circulate high pressure hydraulic fluid within the hydraulic pumping system 120. The hydraulic pumping system 120 is coupled to a motor 136 via a hydraulic fluid circulation system 125. The motor 136 converts energy from the circulating high pressure fluid into mechanical energy. The motor 136 may be any hydraulic motor suitable for this purpose that is known in the art. The motor 136 is coupled by a transfer device 138 to a generator 140. The motor 136 includes a third sensor 141 for providing motor operational data to the power generation system 105. The transfer device 138 may be a shaft. The generator 140 converts the mechanical energy into electricity. The generator 140 provides the generated electricity to a power grid 150 via a transmission line 142. In another embodiment, the motor 136 and generator 140 may be combined in a single device.
The hydraulic pumping system 120 further includes a secondary subsystem 142 in fluid communication between the high pressure fluid line 121 and the low pressure fluid line 127. The secondary subsystem 142 performs one or more secondary functions. Secondary functions refers to functions served by the high-pressure flow of operating fluid that are indirectly related to the generation of electricity, i.e., functions that do not require the flow of such fluid to the generator 140. For example, the high-pressure flow of operating fluid in the secondary subsystem 142 can be used to lubricate bearings and/or the shaft 112. In this exemplary embodiment, the hydraulic pumping system 120 includes one secondary subsystem 142, however, in another embodiment, the hydraulic pumping system 120 may include one or more secondary subsystems 142. In yet another embodiment, the hydraulic pumping system 120 may have the secondary subsystem 142 omitted.
The hydraulic pumping system 120 additionally includes a first flow-control device 146 that adjusts the flow of high-pressure operating fluid from the pumping subsystem 160 among the high-pressure reservoir 138 and the secondary subsystem 142 by controlling the flow through a by-pass line 131. Additionally, the first flow-control device 146 is able to control flow from the pumping subsystem 160 within the predetermined operation parameters and/or thresholds, which can vary depending on the application. The hydraulic pumping system 120 may include other flow-control devices (not shown) to control flow within the hydraulic pumping system 120. For example, a second flow control device (not shown) may control flow from the high-pressure reservoir 138 to the motor 136. The first flow control device 146, as well as the other flow-control devices, may be valves (e.g., check valves) or other devices known in the art to be suitable for such purposes.
Referring still to
When the generator 140 is being overdriven, which usually results from high wind conditions, the first sensor 161 communicates this occurrence to the controlling subsystem, which determines the appropriate course of action. Such course of action may include (1) decreasing the displacement of the pumping subsystem 160 (in extreme wind conditions, the pumping subsystem 160 can essentially be decoupled from the rotor shaft 112); (2) decreasing any high-pressure flow of operating fluid from the high-pressure reservoir 138 to the motor 136; (3) decreasing the high-pressure flow of operating fluid from the pumping subsystem 160 to the motor 136 and simultaneously increasing the flow of high-pressure operating fluid (from the pumping subsystem 160) to the secondary subsystem 142; (4) decreasing the high-pressure flow of operating fluid from the pumping subsystem 160 to the motor 136 and simultaneously increasing the high-pressure flow of operating fluid (from the pumping subsystem 160) to the high-pressure reservoir 138, provided the second sensor 161 senses that the reservoir 138 still has capacity remaining; or (5) any combination thereof. Any high-pressure flow of operating fluid to the high-pressure reservoir 138 is stored therein, assuming the second flow-control device 146 is in its appropriate state. The high-pressure reservoir 138 provides a reserve of high-pressure operating fluid that can be conducted to the motor 136 to at least partially compensate for pressure loss from the pumping subsystem 160 resulting from low wind conditions or other cause.
When the generator 140 is being underdriven, which usually is the result of low wind conditions, the first sensor 148 communicates this occurrence to the controlling subsystem, which determines the appropriate course of action. Such course of action may include (1) increasing the displacement of the pumping subsystem 160, unless the system is already operating at capacity; (2) increasing the high-pressure flow of operating fluid from the high-pressure reservoir 138 to the motor 136, unless the second sensor 161 senses there is insufficient pressure in the high-pressure reservoir 138 for such action; (3) decreasing in whole or in part any high-pressure flow of operating fluid to the secondary subsystem 142 and increasing high-pressure flow to the motor 136; or (4) any combination thereof.
The first and second sets of bearings 320, 322 are supported by an internal frame (not shown) of the nacelle 102 (
The pump head 325 may further include cylinder deactivation or other fluid displacement-changing technology, thereby providing the pumping subsystem 160 (
In alternative embodiments, the shaft 312 and pump 300 can be de-coupled by using a flexible coupling (not shown) in order to reduce structural noise. In other words, by having a torsionally flexible element between the cam 328 and shaft 312.
In another embodiment, the pump 300 may be coupled to the shaft 312 by a pump shaft (not shown). In this arrangement, the pump 300 may be mounted on a baseframe (not shown) of the nacelle 102 (
Depending on the arrangement of valves (not shown) within the pump 300, in some embodiments, it may be beneficial to include a connection to disconnect the torque arms (not shown). In another embodiment, the pump 300 and/or motor 136 may be place at an angular direction relative to vertical in order to not drain the pump 300 during select operating conditions. This results in a reduction of leakage in the pump 300.
In yet another embodiment, more than one cylinders 380 may be de-activated in low power applications, both in the pump 300 and the motor 136. The activation/deactivation may be performed by pressurizing the pistons 330 to top dead center (TDC) by oil. It may also be done by applying a lower than atmospheric pressure to the cylinders 380 by applying a lower than atmospheric pressure to the high pressure lines 360, or by applying the lower than atmospheric pressure directly to the pump 300.
In another embodiment, accumulator cavities (not shown) may be used to store oil temporarily if a complete drainage of the pump 300 or motor 136 cannot be avoided. In this situation, the accumulators may not necessarily be depressurized. In some circumstances, the accumulators may only be partially depressurized to the extent needed to not let the compressed air reach too high of a pressure. Alternatively, fluid bags may be used to temporarily store oil.
Ancillary components (not shown) such as accumulators, circulation and supply pumps, valves, filters and pipes can be disposed in the baseframe construction, the pump 300 or the motor 136.
In another embodiment, a multi-bay system (not shown) or separated cylinders 380 can be re-routed in order to avoid the use of piston accumulators and to have free surface separation. In this embodiment, the cylinders 380 may have dual exhaust ports (not shown). This can be done from cylinders 380 providing overcapacity, or from the shift of operating point pressure delivery. The elimination of bladders and/or pistons also facilitates the usage of the accumulators for maintenance drain functions.
Any interface of oil and air in the hydraulic pumping system 120 will give transport of air into the oil and oil into the air. In order to remove air from oil in the, a compressor may be used to bring it into an accumulator (not shown) for removal. In one embodiment, this may be performed at a pressure under 250 bar. In another embodiment, this may be performed at a pressure greater than 250 bar. After emptying any low pressure void created by the air, a particular accumulator part may be repressurized.
A source for potential conversion losses in the hydraulic pumping system 120 is the compressibility of the fluid and the flexibility of the pumps 300. Additionally, the performance of the hydraulic pumping system 120 may be enhanced by controlling the dispersion of air in oil. For example, the dispersion of air in oil may be reduced by immersing all moving parts in oil so no free surfaces exist, using a centrifuge (not shown) to extract air from oil, by locally dropping the pressure in the oil to evaporate water and ease separation of air from the oil, and by any combination thereof. In another embodiment, oil may be passed through two pumps 300 in sequence and having the second pump 300 have a bigger volume-flow per revolution compared to the first pump 300. In this manner, the oil between the pumps 300 will be at a low pressure or at vacuum. The low pressure or vacuum may have to be maintained by taking out evaporated air, and additional oil may have to be added by letting high pressure oil bleed in.
While the invention has been described with reference to a preferred embodiment, it will be understood by those skilled in the art that various changes may be made and equivalents may be substituted for elements thereof without departing from the scope of the invention. In addition, many modifications may be made to adapt a particular situation or material to the teachings of the invention without departing from the essential scope thereof. Therefore, it is intended that the invention not be limited to the particular embodiment disclosed as the best mode contemplated for carrying out this invention, but that the invention will include all embodiments falling within the scope of the appended claims.
This Application claims benefit of Provisional Application No. 61/087,423, titled “WIND TURBINE SYSTEM”, filed Aug. 8, 2008. The disclosure of the Provisional Application is hereby incorporated by reference in its entirety.
Number | Date | Country | |
---|---|---|---|
61087423 | Aug 2008 | US |