This invention relates to wind turbines, and in particular to horizontal axis type wind turbines of large diameter.
Conventional large horizontal axis wind turbines employ two or three long, slender blades cantilevered out from a central, horizontal axle that in turn is raised high in the air atop a tall, slender tower that cantilevers up from the earth's surface. One result: a small transverse wind force, X, exerted at the tip of a blade will create large (≈30X) tension (upwind) and compression (downwind) stress loads that the entire lengths of both blades and tower must be able to withstand.
Furthermore, in a conventional horizontal axis wind turbine, power is taken off at the axis of blade rotation, at an RPM that must vary inversely with blade length to avoid an excessive tip speed. The lower RPM associated with greater blade length requires a proportionately heavier axis bearing to support blade rotation, and a heavier gearbox, or if gearless, a larger and heavier generator structure, to produce energy at the power line frequency.
Wind turbine U.S. Pat. No. 4,417,853, drawing #12 (copy enclosed) shows two potential means for reducing the cost of extracting energy from the wind: 1) Small wheels at the turbine perimeter take off the useful power output from the wind at an initial RPM far higher than the RPM of blade rotation. 2) Upwind perimeter “stay” cables withstand the wind force exerted on the blade area with far less stress than the stress levels experienced by cantilever beam blades sweeping through the same area. However, the intricate cloth blade furling system shown in U.S. Pat. No. 4,417,853 has not proven suitable for large wind turbines.
To make possible a much larger power output, the present invention replaces the furling cloth sails of U.S. Pat. No. 4,417 853, with blades having a more conventional airfoil shape, that are supported within a surrounding structure which can counter wind force exerted on the blades with far less weight than is needed by the conventional combination of cantilever beam blades, set atop a cantilever beam type tower.
In a preferred option, the airfoil shaped blades of this invention extend from a common center of rotation, out to the inner ring of two concentric, nested rings. The inner ring attached to the blades is able to move smoothly through the interior of the outer nested ring by means of a rolling contact of the inner ring with a sufficient number of wheel mounted tires that drive rotation of multiple generators, and air compressors (?) mounted at intervals around the internal surface of the outer nested ring. This enables producing a useful power output at a far higher initial RPM than the RPM of blade rotation, in response to the wind's force.
Individual blades as used in this invention can range in design from simple, impact air inflated, cloth airfoils whose angle of incidence to local airflow cannot be changed, to multiple, tandem, rigid airfoil segments, each of whose trailing edge flaps can be rotated in unison by a central actuator, to a common angle of attack to local airflows, as a means of maximizing recovery of energy from wind transiting the blade system. (Impact air inflated cloth airfoils have the advantage of weighing a tiny fraction of the weight needed for cantilever beam blades, and are easily made retractable for protection from severe weather.)
“Stay” cables extend from between adjacent segments of the light weight airfoils made possible by this invention, fore and aft to ancillary structure having the depth and arrangement needed to directly absorb the axial force that the wind exerts oh the blade system, with far less stress than is experienced by the blades of a cantilever beam blade system.
The space frame type structure for wind turbines as described in this invention, will greatly reduce the structural weight now needed to extract energy from the wind, and may enable the construction of wind turbines of much larger blade swept area than those currently available, that can intercept the wind at an increased height above ground level where the wind typically has a greater energy content.
Other features and advantages of the invention will be apparent from the following detailed description, taken in conjunction with the accompanying drawings.
Final
As shown in
In
Shroud cables 11 prevent spars 8 from being pulled upward by stay cable tension, by pulling upward on wheels 12 that roll in an inverted position along a suitable downward facing surface of flange 14 molded into curb 13. Curb 13 is elevated on columns 16 to free the local land surface for use in farming and ranching. Curb lid 15 serves to keep the various elements riding the curb moving in unison, and also keeps the curb top clean.
In
Inner ring 4 is supported for circumferential rotation in step with blade segments 1, through the interior of outer ring 5, by engaging multiple air inflated tires on outer ring wheels 20 that drive power generating equipment distributed at regular intervals around the interior of outer nested ring 5. If needed, idler wheels, not shown, can be interspersed between wheels 20 in the numbers needed to keep inner ring 4 moving smoothly through the interior of outer ring 5.
An alternative arrangement eliminates the inner nested ring 4 and instead uses the blade system to drive rotation of tires on wheels that move with the blade system while bearing on appropriate surfaces of the remaining ring 5, but this alternative seems likely to make the transfer of power output from tire/wheel driven generators to ground level much more difficult to accomplish reliably, and could eliminate wheel driven compression of air for energy storage.
In
Wind force that is exerted on the outer nested ring 5 may require perimeter stays. 7b that extend fore and aft from outer nested ring 5 to terminate on the same diagonal spar mounted collars 23 that support rotation of shields 22 in synchrony with rotation of fore and aft sets of stay cables 7, along with the blade system.
The wind turbine structure described above can be modified for offshore use as shown in
Ring 33 at the top of columns 34 can then support wind turbine structure 38, by means which allow rotation of structure 38 into the current wind direction. This may consist of supporting the weight of wind turbine structure 38 on multiple, interconnected jib cars 18 that travel along the upper surface of upper ring 33.
Wind turbine structure 38 differs from the land based version of this invention in requiring a replacement for diagonal spars 8 as a means of absorbing wind force exerted on the blade system via stay cables 7. This may consist of: 1) a blade rotational, axis spar 39 that extends horizontally between opposite focal points for stay cables 7, 2) four nearly vertical spars 40 whose lower ends rest on jib cars 18 and whose upper ends converge in pairs at the two focal points for stay cables 7, and cables 41 that interconnect the foregoing elements into a structure that can rotate in azimuth into the current wind direction, and that will prevent the blade system from collapsing forward, should the wind suddenly reverse direction.
A major concern is that an extreme wave could exert enough lateral pressure on submerged ring 32 and columns 34 to overstress the sea bed anchoring system. This possibility can be minimized by:
1) Submerging ring 32 to a sufficient depth to greatly diminish ring motion in response to the passage of a storm wave,
2) By placing “sage” weights on tower anchor cables 35 at a suitable point along each cable in the direction of the arrow 36, so that greater resilience is offered to wave side force exerted on lower ring 32 and column 34.
Optionally, the rotation of inner nested ring 4 by the blade system may be used to drive rotation of air compressors as well as generators, in order to compress air for transmission to tower 37 and from there transmission to underground storage via passage through a volume of eutectic salt that is stored within tower 37, for later recovery to meet system demand for electrical energy. Optionally, submerged ring 32, and partially submerged columns 34 can support means 42 for extracting energy from wave motion in the surrounding water body, to supplement energy derived from the wind.
Many novel wind turbine blade systems are made possible by this invention. For one example,
As a second example of the novel blade system made possible by this invention,