The present invention relates to a wind turbine installation as claimed in claim 1.
Wind turbines have already been known for a long time as power generators. Powerful wind turbines follow one simple rule, that is to design the hub height and rotor circle to be as large as possible. Visibility, noise and shadow coverage are enormous. This fact means that wind turbines are always erected further away from civilian areas, whether on-or offshore. The very long access routes resulting therefrom, including service and maintenance costs, are anything but resource- and cost-effective.
It is an object of the invention to design a wind turbine installation such that it can be built close to civilian areas and thus saves on resources and costs. This is achieved by a flat, rotor-circle-reduced and modular construction.
One aspect of the present invention relates to a wind turbine installation comprising a turbine carrier on tower supports. At least two wind turbines are provided on the turbine carrier. The wind turbines are mounted rotatably by means of a rotating pedestal on a tower console.
In one particular embodiment, the wind turbine installation is designed such that the turbine carrier can rotate about the vertical axis via the rotating pedestal.
In one particular embodiment, the turbine carrier is designed such that it can control a rotation about the vertical axis for yaw adjustment in relation to the wind direction. This embodiment furthermore preferably has a wind sensor for detecting the wind direction and a position motor for rotating the turbine carrier via the rotating pedestal.
In one particular embodiment, the turbine carrier with the turbine is designed such that it can be lowered by means of a drive. In this embodiment, the tower supports are designed in an articulated manner and as a parallelogram.
In one particular embodiment, a pitch axis of the turbine is designed to be adjustable by means of a length adjuster via the tower support.
In one particular embodiment of the present invention, turbine carrier, tower supports and turbines are designed to be modular according to the modular principle.
In one particular embodiment, the tower supports are arranged in the interspace of the rotor circles of the wind turbines.
In one particular embodiment, the wind turbine installation is designed in such a way that the wind force itself undertakes the yaw adjustment via a point of rotation. In a further, particular embodiment, the wind turbine installation has three offset turbines, namely a left turbine, a right turbine and a central turbine. The central turbine is arranged at the point of rotation and is the foremost turbine. The left and the right turbines flank the central turbine and are offset rearwardly in the wind direction.
In one particular embodiment, the wind turbine installation is designed such that it can be used on- and offshore via the tower console.
In one particular embodiment, the wind turbine installation is designed such that it can be used on a ship via the tower console. A further aspect of the present invention relates to the use of a wind turbine installation as described above on a ship.
Further advantageous embodiments and combinations of features of the invention will become apparent from the detailed description given below and from all the patent claims.
In the drawings used to illustrate the exemplary embodiment:
In principle, identical parts are provided with identical reference signs in the figures.
Number | Date | Country | Kind |
---|---|---|---|
1647/12 | Sep 2012 | CH | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/CH2013/000161 | 9/10/2013 | WO | 00 |