This application claims priority to International Patent Application PCT/NL03/00103, filed 12 Feb. 2003, which claims priority of NL applicaiton 1019953, filed 12 Feb. 2002.
The invention relates to a wind turbine comprising a stationary vertical mast on which the moving part of a wind turbine is placed, which tower is at least partly composed of prefabricated parts.
DE-A-198 32921 describes a tower or mast having inner and outer walls composed of steel shells, between which a single concrete body has been poured. Optionally, the tower may be composed of prefabricated steel shell parts.
FR 1 145 789 describes a tower or mast built up from identical prefabricated concrete elements which are helically stacked.
At the moment, there are four conventional methods for making a tower or mast on which the moving parts of a wind turbine can be placed. These are:
The existing prefabricated concrete towers or masts are suitable for supporting wind turbines up to 1.8 MW. The towers are built up from complete cylindrical elements, while the lower end is made of two half elements. The elements are connected together by completely continuous tension cables and a mortar. When building up the tower, a tower crane is used to stack the elements.
Drawbacks:
The most conventional method for building towers capable of supporting heavy machines is pouring in situ. In this method, the form work and reinforcement are made on site and the concrete is poured in. This has the following drawbacks:
It is an object of the present invention to avoid the above-mentioned drawbacks and to provide a wind turbine with a tower or mast that can be built up easily and rapidly from prefabricated parts, without necessitating special road transport and/or heavy equipment for building up the tower or mast. Since the tower serves to support the moving parts of the wind turbine, it must be able to resist very great forces in the horizontal and the vertical direction.
To this end, the invention provides a wind turbine, comprising a stationary vertical mast (or tower) on which the moving part of the wind turbine is arranged, which mast is at least partly composed of prefabricated wall parts, several juxtaposed wall parts forming a substantially annular mast part.
The tower is built up from several prefabricated segments, preferably of reinforced concrete or another stony material, which are placed on each other and/or in rings beside each other. The segments are placed side by side in a ring, for instance with three or more segments forming a polygonal ring. In the vertical direction several rings may be placed on each other. The segments may be connected together by using a mortar and/or post-tension cables. The segments at one height level are preferably identical. Depending on the choice of the shape of the cross-section of the tower, differently shaped segments are required. The tower preferably has a cross-section which is a polygon or a circle, the diameter of which decreases towards the top, so that a topped conical shape is realized or approximated. Another possibility is a tower or mast having a circular cross-section, one or more rings of the tower or mast being stepped on the inner and/or outer side, so that the outer diameter and/or wall thickness of a higher ring is smaller than of the respective lower ring.
Three base embodiments for the segments of a tower or mast having a polygonal cross-section are preferred:
1 Regular Polygonal Cross-section, Even Number of Angles (See
The segments (A) from which the tower or mast is built up have in all side surfaces a trapezium shape (B), which tapers upwards and is symmetric. A segment consists of two side surfaces which are connected together on the oblique side. When the cross-section is a regular polygon having an even number of angles, the segments are then always placed with the angle on top of the joint, between two subjacent segments, to prevent weak spots at that joint (see
2 Regular Polygonal Cross-section, Asymmetric Segments (See
When the cross-section is a regular polygon in this embodiment, a side surface (E) of the tower, at the level of one ring, always consists of asymmetric parts of two segments which together form the tapered symmetric trapezium. These segments themselves are asymmetric, preferably with a short and a long side. When per ring of segments the base shape is mirrored, no long joints are formed in these embodiments either (see
3 Irregular Polygonal Cross-section, Even Number of Angles
The side surfaces of the tower or mast alternately consist of rectangular and tapered symmetric trapeziums. The segments also consist of a tapered trapezoid and a rectangular surface which are connected together on the oblique side of the trapezoid. The rectangular side is preferably alternately part of the left and the right side of a segment, so that here, too, long joints are prevented. In this embodiment, the cross-section of the tower or mast is an irregular polygon having an even number of angles. This embodiment has the advantage that there are always a number of surfaces that keep a constant width. As a result, it is easy to fit post-tension cables that run through the whole tower. Also, rectangular shapes are relatively easy to produce.
What the use of the trapezium shape of the faces entails is that a mold, and hence the segments themselves, is relatively easy to produce. In addition, the trapeziums enable a conical tower or mast.
There are also base embodiments for the segments of a tower or mast having a circular cross-section.
Circular Cross-section
When using a circular cross-section for a prefabricated tower, segments are used which jointly, in rings, form hollow circle cylinders (see
The segments may optionally be provided with guides, for instance wheels or material of low friction, such as a smooth material, so that the segments can be moved up against the side of the tower. The segments are preferably of such a size and mass that they may be transported at any time in the respective country or countries without special permission and/or escort, preferably on freely chosen roads. This means for The Netherlands that they can be placed on a lorry such that they do not occupy more than a width of 3.5 m and, including the height of a lorry, a height of 4.2 m.
As the segments are prefabricated, under better controlled conditions than when pouring in situ, a better concrete quality can be obtained. This also contributes to the strength of the tower. Also, a prefabricated tower can thus be placed more rapidly, because there is no need to build a mold on site, or necessity to wait for appropriate weather conditions and hardening of the concrete.
It must preferably be possible for the segments to be placed such that vertical joints of two successive rings are not in line with each other. This can be achieved by arranging for segments, per ring of segments, to consist alternately of a left and a right design.
By arranging for any post-tension cables, possibly to be arranged later for internal reinforcement, not to run throughout the tower, and thus post-tensioning them at different heights, they can be used more efficiently (see
During the construction and destruction of the tower, hoisting means may be used, such as a crane, which uses the already constructed part of the tower itself as support and elevation. Such a crane is preferably capable itself of climbing up in or outside the tower. When the last segment of the tower has been placed, this crane can be removed by means of the crane necessary for placing the machine. The use of such a crane has the advantage that it is much less expensive in use than the conventional cranes used for this type of operations. When the same crane is also used during the destruction, the necessity for expensive tools and methods can be prevented. After the respective post-tension cables have been removed, the segments can be lowered with the crane. These can subsequently be reused or scrapped. This results in much less loose waste material than is the case when destructing towers poured in situ.
The enclosed
Further advantageous embodiments are given in the subclaims. The invention also relates to a mast for a wind turbine, a prefabricated wall part for a mast of a wind turbine and to a method for building a wind turbine.
The invention will be explained in more detail on the basis of an exemplary embodiment shown in a drawing. In the drawing:
The figures are only diagrammatic representations of preferred embodiments of the invention and are given by way of non-limitative exemplary embodiment. In the figures, similar or corresponding parts are denoted by the same reference numerals.
Referring to
The cross-section of the mast 10 is substantially cylindrical and tapers conically upwards. The cross-section of this substantially cylindrical shape is preferably a regular or irregular polygon, but may also be a circle.
Two juxtaposed wall parts 11 lie, adjacent the edge 13 where they abut each other, in line with each other. In this exemplary embodiment, the vertical edges 13 therefore do not lie in the angle of the polygon. Advantageously, the vertical edges 13 of a wall part 11 lie at mutually different distances from an angle of the polygon. A substantially vertical edge 13 of a wall part 11 runs preferably parallel to an angle line of the wall part 11. It is to be noted that it is quite possible as such for vertical edges 13 to be situated in an angle of the polygon.
In this exemplary embodiment, the wall parts 11 comprise a substantially flat body part 14 flanked on both sides by two side parts 15A, 15B, each enclosing an angle of the polygon relative to the body part 14. In the height direction, these angles form two angle lines of the wall part 11. It is of course also possible, as described before, to form an annular polygonal cross-section with wall parts 11 having a body part 14 flanked by only one side part 15. Furthermore, it is also possible, using wall parts, to form an annular, non-angular, smooth cross-section. For instance, with at least three circular arc-shaped segments a cylindrical annular cross-section can be realized. Furthermore, from such segments a mast part 12 having an oval or oval-like cross-section can be realized.
Referring to
Referring to
Referring to
Referring to
To avoid this drawback, according to the invention the reinforcing cable 22 is supported via a bridge part 34 on the upper edge of the mast part direct, or indirectly via a flange enclosed therebetween. The bridge part is preferably freely supported on the edge 32. Via the inner space of the mast, the bridge part 34 forms a connecting line 35 between two points on the edge, the connecting line intersecting the center line 36 of the cable. The center line 36 is preferably oriented vertically, while the connecting line 35 is preferably oriented horizontally, so that center line 36 and connecting line are located in planes at right angles. The tensile force in the cable 22 can thus be transmitted to the wall of the mast 10 as pressure force without simultaneously exerting a bending moment on the edge 32. Preferably, several cables are anchored in each bridge part 34.
If the bridge parts 34 are of stepped or stacked design, they can be easily nested in annular form. In the exemplary embodiment shown here, each bridge part 34 has, as shown in
Referring to
Just like the above-described variant, the bridge parts extend via the inner space between two points on the edge 32 of the mast part. In this exemplary embodiment, the bridge parts 34 are beam-shaped and have been grouped to form a polygonal ring. In this example, the bridge parts 34 are supported on supporting beams 42, which have also been grouped to form a polygonal ring, such that the ends of the supporting beams are in each case supported on the edge 32 or the flange 31, while the ends of the bridge parts 34 are in each case supported on the supporting beams 42. The bridge parts 34 are provided with holes 44 for the tension cables 22 to be passed through. The supporting beams 42 are also provided with recesses or passage holes 40.
It is to be noted that the bridge parts described here may also advantageously be used to transfer tension cables arranged externally relative to the wall to substantially annular, conical or cylindrical masts of a different type, in particular to masts with integrally formed, annular concrete mast parts or integrally formed concrete mast parts which, for instance, have been poured on site. Also, when using groups of tension cables that do not extend throughout the length of the mast, bridge parts can be used at several points along the height.
It will be clear that the invention is not limited to the exemplary embodiments described herein. Many variations are possible within the scope of the invention as defined in the following claims.
Number | Date | Country | Kind |
---|---|---|---|
1019953 | Feb 2002 | NL | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/NL03/00103 | 2/12/2003 | WO | 00 | 3/4/2005 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO03/069099 | 8/21/2003 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
3099220 | Butman | Jul 1963 | A |
3196990 | Handley | Jul 1965 | A |
3217459 | Meyer | Nov 1965 | A |
3276182 | Handley | Oct 1966 | A |
3561890 | Peterson | Feb 1971 | A |
3728837 | Kiefer, Jr. | Apr 1973 | A |
4187660 | Lin et al. | Feb 1980 | A |
4248025 | Kleine et al. | Feb 1981 | A |
4340882 | Maio et al. | Jul 1982 | A |
5117607 | Bourdon | Jun 1992 | A |
6408575 | Yoshida et al. | Jun 2002 | B1 |
Number | Date | Country |
---|---|---|
198 32 921 | Feb 2000 | DE |
1262614 | Dec 2002 | EP |
1 145 789 | Oct 1957 | FR |
Number | Date | Country | |
---|---|---|---|
20050129504 A1 | Jun 2005 | US |