The invention relates to a winding arrangement comprising a number of winding sections arranged at a distance from one another in the axial direction and electrically connected to one another so as to form a series circuit, which winding sections each have a conductor, which is wound from an inner end to an outer end of the respective winding section and in the process enlarges the winding section in the radial direction, wherein at least one winding section is electrically connected at its outer end to the inner end of the winding section that follows in the axial direction.
The invention also relates to a transformer and to a coil or inductor comprising a winding arrangement of this kind.
The winding arrangement mentioned above is known, for example, from EP 2 251 877 B1. The winding arrangement shown there consists of a series circuit of so-called disk windings, which are arranged at a distance from one another. In this case, the outer end of each disk winding is connected to the inner end of the respective disk winding arranged adjacently in the axial direction. In this way, during production of the entire winding, the conductor in each disk winding can always be wound onto a shaping roll from the inside to the outside. This simplifies the production of the winding arrangement with a cost saving as a result. However, it is disadvantageous that the intermediate section of the conductor, which extends between the disk windings, has to bridge not only the axial distance of the adjacent disk windings but also the radial extent of the winding. The adjacent disk windings therefore have to be arranged at a great distance from one another in order to provide space for said intermediate section.
So-called continuous turned-over windings are also known from experience. In continuous turned-over windings, the outer end of a disk winding is connected to the outer end of the disk winding that follows in the axial direction, wherein, however, said disk winding is wound from the outside to the inside. However, the change in winding direction during production is complex and leads to additional costs.
The object of the invention is to provide a winding arrangement of the kind mentioned at the outset, which can be produced in a cost-effective manner and the winding sections of which are arranged at a comparatively short distance from one another.
The invention achieves this object by virtue of the fact that at least one winding section that follows in the axial direction forms a stepped region, in which the inner end of said winding section is arranged in the radial direction at the height of the outer end of the winding section, to which outer end said winding section is electrically connected.
The invention provides a winding arrangement, in which the one winding section is connected to the respective adjacent winding section by simply bending the conductor, without the conductor having to be guided over relatively long paths between adjacent winding sections. In this case, all the winding sections have the same winding direction. The winding direction thus does not change in the context of the invention. The entire winding arrangement preferably consists of a single wound conductor. Said continuous conductor is wound such that winding sections are formed, which are arranged so as to follow one another in the axial direction. Winding the conductor in a spiral-shaped manner at certain distances forms winding sections. In the winding sections, the conductor tracks that are insulated from one another bear against one another and, as the number of windings increases, enlarge the winding section in a direction referred to here as the radial direction. The winding process forms circumferentially closed winding sections, which delimit a section interior. The section interiors of the winding sections are at least partially aligned in the axial direction, so that the stack of winding sections defines an inner contour, which is referred to in the following text as roll interior.
In order to design the conductor or conductor section that connects the winding sections to one another to be as small and compact as possible, with the exception of the first winding section of the series circuit, each winding section forms an eccentric stepped region, in which the inner winding layer of said winding section is at a greater distance from an imaginary central axis of the roll interior than outside of the stepped region. This distance, which is enlarged compared to the other sections, corresponds to the distance between the inner and the outer end of the adjacent winding sections; in other words, it thus corresponds to the thickness of the winding. The outer conductor therefore has to be guided only laterally, that is to say in the axial direction, from the outer winding layer of the respective winding section to the inner winding layer of the adjacent winding section. The conductor bent in this way in said stepped region then serves as inner winding layer of said adjacent winding section. By raising the inner winding layer to the level of the outer winding layer in the stepped region, the conductor section or the conductor between the winding sections can be formed to be short so that the distance between the winding sections can likewise be reduced.
Advantageously, with the exception of the first winding section of the series circuit, each winding section forms a stepped region. According to this variant of the invention, the first winding section forms the so-called start of the winding arrangement, by means of which start the winding arrangement is connected, for example, to the phase connection of a transformer or an inductor. However, the outer end of the first winding section is then connected in the stepped region to the inner end of the winding section that follows in the axial direction, so that said winding section is then the first winding section that has a stepped region. This applies accordingly to the winding sections that follow in the axial direction.
According to a preferred configuration of the invention, each winding section is a disk winding designed in a disk-shaped manner. In a disk winding, the individual winding layers are wound precisely above one another so that they extend in a disk-shaped manner effectively in a common tier or “plane”. According to this advantageous further development, the winding arrangement is formed in an even more compact manner.
Advantageously, each disk winding is formed in a circumferentially closed manner and delimits a section interior. The section interiors of the disk windings overlap in the stack, which results from the successive arrangement of the disk winding in the axial direction, so that space is provided for a limb of a transformer or inductor core.
In one variant thereof, each disk winding forms a circular annular section outside of the stepped region. This makes it possible, in the production of the winding arrangement according to the invention, to obtain a circular-cylindrical molded body on which the winding sections can be wound. This reduces the production costs.
According to one preferred configuration of the invention, the disk windings arranged next to one another in the axial direction delimit a circular-cylindrical interior, which has a central axis, wherein the first winding layer of each disk winding is at a greater distance from the central axis in the stepped region than in the annular region. The circular-cylindrical interiors of a winding make it possible to hold conventional limbs of a yoke so that there is no need for complex adjustment.
Expediently, the center of the stepped region of each disk winding spans an angle α with respect to the central axis with the center of the stepped region of the directly adjacent disk winding. This twisting of the stepped regions around the central axis is necessary in order to bring the outer winding layer of the disk windings to the radial level or the radial height of the first winding layer of the respective disk winding that follows.
According to a further development related thereto, each disk winding is arranged in alignment with the respective next disk winding but one. According to this variant, the entire winding arrangement forms eccentric protrusions at only two locations. This likewise simplifies the adjustment of the winding arrangement and the subsequent handling thereof.
Advantageously, the angle α is 180 degrees. According to this variant, the protrusions are located opposite one another on different sides of the winding arrangement. As a departure therefrom, the angle α is in the range of from 10 to 30 degrees. According to this variant of the invention, the two protrusions are arranged on the same side of the winding arrangement, for example at the front. In this way, it is possible to delimit a conductor free space, which serves to hold feed lines or outlet lines.
In principle, any kind of conductor can be used in the context of the invention. The conductor is thus, for example, a drawn wire conductor or a flat film conductor.
Advantageously, the conductor is a strip conductor formed in a strip shape. For example copper or preferably aluminum is considered as the strip conductor material, wherein the conductor or in this case the strip-shaped strip conductor is surrounded at least in sections in each case by an insulating layer. The insulating layer may be, for example, an insulating coating layer or an insulating film. The insulating film is placed between consecutive roll layers during winding.
According to an expedient configuration related thereto, the strip conductor is bent over twice in the stepped region. By way of the double bending, the strip conductor can be guided particularly easily in the axial direction from the respective one winding section to the winding section that follows.
Advantageously, the winding arrangement is part of a transformer or a coil or inductor.
Further expedient configurations and advantages of the invention are the subject matter of the following description of exemplary embodiments of the invention with reference to the figures of the drawing, wherein identical reference signs refer to components having the same function and wherein
As is illustrated schematically in
The interior 14 serves to hold a magnetizable material, which is set up to guide a magnetic field with a low magnetic resistance. In a plan view, the individual disk windings 3a, 3b, 3c . . . 3n are not formed in a circular shape and therefore do not individually delimit a circular section interior 13. Instead, each disk winding 3a, 3b, 3c . . . 3n has an eccentric stepped region 10a, 10b, 10c . . . 10n, which is at a greater distance from an imaginary central axis of the circular-cylindrical interior 14 of the winding arrangement 8 than the remaining section of each disk winding 3a, 3b, 3c . . . 3n, which in a plan view follows a circular shape. It can also be seen that the stepped region 10a is not arranged in alignment with the stepped region 10b of the disk winding 3b, which directly follows the first disk winding 3a in the axial direction. Instead, the stepped region 10b is offset in a circumferential manner with respect to the stepped region 10a so that the two center points of the stepped regions 10a and 10b span an angle α with one another with respect to the imaginary central axis of the interior 14 of the winding arrangement 8. It can furthermore be seen that the stepped region 10c of the next disk winding 3c but one is arranged in alignment with the stepped region 10a of the first disk winding 3a. This applies accordingly to the stepped regions 10b and 10d. Each disk winding 3a, 3b, 3c . . . 3n is therefore arranged by way of its stepped region 10a, 10b, 10c . . . 10n in alignment with the respective next disk winding 3a, 3b, 3c . . . 3n but one, wherein the stepped regions 10a, 10b, 10c . . . 10n of disk windings 3a, 3b, 3c . . . 3n, which follow one another directly, are rotated with respect to one another. In the winding arrangement 8, overall two eccentric convex portions 15, 16 can therefore be seen, which are formed by the stepped regions 10a, 10c, 10e . . . 10n-1 and the stepped regions 10b, 10d, 10f . . . 10n, respectively. If the disk windings 3a, 3b, 3c . . . 3n are numbered using integer numbers starting from 1, the one convex portion 15 is formed by the disk windings 3a, 3d, 3e . . . 3n -1 with even numbers and the other convex portion 16 is formed by the disk windings 3b, 3d, 3f . . . 3n with uneven numbers.
It can also be seen in
Number | Date | Country | Kind |
---|---|---|---|
10 2015 226 097.6 | Dec 2015 | DE | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/EP2016/078500 | 11/23/2016 | WO | 00 |