This application claims priority under 35 USC 119 to Japanese Patent Application No. 2016-013970 filed on Jan. 28, 2016, the entire contents which are incorporated herein by reference.
This invention relates to a winding device that winds a marginal portion peeled off label roll paper and a cutoff detection method for the marginal portion.
A conventional winding device removes a marginal portion that is an unnecessary part from a printed label roll paper and winds it on a margin winding part (e.g., see Patent Document 1). Also, there is one that is provided with a margin cutoff detection device utilizing a photoelectric tube and a microswitch that detect that the marginal portion is cut off and detects a cutoff of the marginal portion when performing an operation to wind the marginal portion.
[Patent Doc.] JP Laid-Open Application Publication 2009-23094
However, in the conventional technology, there is a problem that the margin cutoff detection device must be modified according to the material and width of the marginal portion of the label roll paper to detect that the marginal portion is cut off, which imposes a heavy burden on its operator.
The objective this invention is to solve such problem as this and detect a cutoff of the marginal portion without imposing any burden on the operator.
A winding device includes a first roller that winds label roll paper, the label roll paper being composed with a continues base sheet, a plurality of labels and a marginal portion, the labels and the marginal portion, which surrounds the labels, being peelably attached on one side of the base sheet such that the labels and the marginal portion entirely covers the one side of the base sheet, a second roller that winds the marginal portion peeled off the label roll paper, a drive part that generates a driving force for the second roller to rotate, a drive transmission control part that is provided between the drive part and the second roller such that the driving force is transmitted to the second roller from the driving part, and stops transmitting the driving force to the second roller if a load placed on the second roller exceeds a prescribed load, a detection part that detects a rotation of the second roller, and a control part that determines a cutoff of the marginal portion based on the rotation of the second roller detected by the detection part.
This invention designed in this manner allows obtaining the effect that a cutoff of the marginal portion can be detected without imposing any burden on the operator.
Below, embodiments of the winding device and the cutoff detection method by this invention are explained referring to drawings.
In
Here, the label roll paper 2 is made by peelably bonding, to the base sheet, a label part that has characters and images printed by the printer 3 and the marginal portion that has no characters or images printed by the printer 3 and becomes unnecessary.
The winding device 1 comprises a tension bar 4, an idle roller 5, a winding roller 6, a peeling bar 7, a margin winding part 8, a tension bar guide 9, and tension bar sensors 10.
The winding device 1 brings the label roll paper 2 ejected from the ejection port of the printer 3 into contact with the tension bar 4 that is movable in the up-down direction, and winds it into a roll shape with the winding roller 6 via the rotatable idle roller 5. Also, the winding device 1 has the margin winding part 8 wind the marginal portion peeled off the label roll paper 2 by the peeling bar 7. In the carrying path in
The tension bar 4 is configured movable in the up-down direction indicated with an arrow B in the figure, and also a rotatable roller is attached. This tension bar 4 is disposed between the ejection port of the printer 3 and the idle roller 5, and is arranged so as to contact with the upper face of the label roll paper 2 ejected from the ejection port of the printer 3.
The idle roller 5 is disposed in the downstream of the tension bar 4 in the label roll paper carrying direction, contacts with the lower face of the label roll paper 2, and guides the label roll paper 2. A high friction member is wound on the surface of the idle roller 5, a torque limiter is provided on the rotation shaft or the gear coupling part of the idle roller 5 so as to allow placing a constant load on the rotation of the idle roller 5. Therefore, it becomes possible to add a constant tension to the label roll paper 2 between the idle roller 5 and the winding roller 6, and homogenize the winding hardness of the label roll paper 2 wound by the winding roller 6.
The winding roller 6 as a first roller is disposed in the downstream of the idle roller 5 in the label roll paper carrying direction, and winds the label roll paper 2 ejected from the ejection port of the printer 3 into a roll shape via the tension bar 4 and the idle roller 5. The winding roller 6 rotates in a direction indicated with an arrow C in the figure by the drive of a winding roller motor 15 shown in
The peeling bar 7 is a rotatable bar disposed in the downstream side of the contact part between the idle roller 5 and the label roll paper 2 in the label roll paper carrying direction. The peeling bar 7 peels the marginal portion of the label roll paper 2 off the base sheet, and rotates accompanying the marginal portion while the marginal portion is running on the surface of the peeling bar 7.
The margin winding part 8 winds the marginal portion peeled off the label roll paper 2 by the peeling bar 7 into a roll shape. The margin winding part 8 rotates in a direction indicated with an arrow D in the figure by the drive of a winding roller motor as a drive source, and winds the marginal portion peeled off the label roll paper 2.
The tension bar guide 9 guides the tension bar 4 slidably in the up-down direction.
The tension bar 4 that is movable in the up-down direction guided by the tension bar guide 9 generates slack of the label roll paper 2 between the printer 3 and the winding roller 6, and generates winding timing for the label roll paper 2 and the marginal portion. Also, the tension bar 4 is placed on the upper face of the label roll paper 2 and adds an appropriate tension to the label roll paper 2 by its self weight.
The multiple tension bar sensors 10 are placed within a range where the tension bar 4 of the tension bar guide 9 can move, and detect the position of the tension bar 4. When the tension bar 4 positioned at the lowest is detected by the tension bar sensors 10, winding of the label roll paper 2 by the winding roller 6 and winding of the marginal portion by the margin winding part 8 are started, and when the tension bar 4 positioned at the highest is detected by the tension bar sensors 10, winding of the label roll paper 2 by the winding roller 6 and winding of the marginal portion by the margin winding part 8 are stopped.
In
The margin winding roller 16 as a second roller is a roller that winds the marginal portion peeled off the label roll paper.
The margin winding roller motor 17 as a drive means is a motor that drives the margin winding roller 16, and its drive is transmitted by the gear coupling part to the rotation shaft of the margin winding roller 16 and rotates the margin winding roller 16.
The torque limiter 18 as a drive transmission control means is provided on the gear coupling part between the margin winding roller 16 and the margin winding roller motor 17 to prevent the drive of the roller motor 17 from being transmitted to the margin winding roller 16 when a load above a prescribed level is placed on the margin winding roller 16. Because the torque limiter 18 allows the drive of the margin winding roller motor 17 to slip without being transmitted to the margin winding roller 16 when a load above a certain level is placed on the margin winding roller 16, it becomes possible to wind the marginal portion by the margin winding roller 16 while maintaining a constant tension added to the marginal portion to be wound.
In this manner, the torque limiter 18 performs a control so that when a load below the prescribed level is placed on the margin winding roller 16, the drive of the margin winding roller motor 17 is transmitted to the margin winding roller 16, and when a load above the prescribed level is placed on the margin winding roller 16, the drive of the margin winding roller motor 17 is cut off so as not to be transmitted to the margin winding roller 16.
The slit plate 19 is a disk-shaped part that is attached to the rotation shaft of the margin winding roller 16 and rotates together with the rotation of the rotation shaft of the margin winding roller 16. The slit plate 19 has penetrating holes formed keeping constant intervals along the circumferential direction.
The slit sensors 20 (20a and 20b) as a detection means are transmission-type optical sensors that detect the rotation state such as the rotation, stop, and rotation speed of the rotation shaft of the slit plate 19, that is the margin winding roller 16, by detecting the penetrating holes of the rotating slit plate 19. Each of the slit sensors 20 (20a and 20b) has an emitting part and a receiving part disposed opposing each other across the slit plate 19, and detects the rotation state of the slit plate 19 by detecting the penetrating holes of the rotating slit plate 19. The slit sensor 20a and the slit sensor 20b are disposed apart from each other by 90 degrees in phase to allow detecting the rotation direction of the margin winding roller 16 based on their respective output signals.
In
The control part 14 is provided with a control means such as a CPU (Central Processing Unit) and controls the whole operation of the winding device 1 based on a control program stored in a memory part such as memory.
The control part 14 is connected to the tension bar sensors 10 and the slit sensors 20 and can take the output signals of the tension bar sensors 10 and the slit sensors 20 as the input.
Also, the control part 14 is connected to the winding roller motor 15 and the margin winding roller motor 17 and can control driving and stopping of their rotations by outputting control signals to the winding roller motor 15 and the margin winding roller motor 17.
In this embodiment, the control part 14 detects a cutoff of the marginal portion wound on the margin winding roller 16 based on the rotation of the margin winding roller 16 shown in
Actions of the above-mentioned configuration are explained.
First of all, the winding operations of the label roll paper and the marginal portion performed by the winding device are explained referring to
First of all, upon detecting that the tension bar 4 is at the lowest level by the tension bar sensors 10, the control part 14 rotates the winding roller motor 15 connected to the rotation shaft or the gear coupling part of the winding roller 6 at a faster speed than the ejection speed of the label roll paper 2 ejected from the printer 3, and winds the label roll paper 2. During this winding operation, the label roll paper 2 pushes the tension bar 4 upwards.
Upon detecting by the tension bar sensors 10 that the tension bar 4 pushed upwards has reached the highest level, the control part 14 stops driving the winding roller motor 15 to stop winding the label roll paper 2. Note that the winding roller motor 15 retains the stopped position.
At this time, because the label roll paper 2 continues to be ejected from the printer 3 even if the driving of the winding roller motor 15 is stopped, the tension bar 4 placed on the upper face of the label roll paper 2 gradually descends by its self weight.
Upon detecting that the tension bar 4 is at the lowest level by the tension bar sensors 10 again, the control part 14 rotates the winding roller motor 15 to start an operation of winding the label roll paper 2.
On the other hand, the control part 14 starts driving the margin winding roller motor 17 at the same time with or earlier than starting driving the winding roller motor 15 to wind the marginal portion by the margin winding part 8. At this time, the control part 14 drives it at a faster rotation speed than the maximum speed of the winding roller motor 15 (a faster linear speed than the linear speed at the maximum diameter of the label roll paper 2 wound on the winding roller 6).
Because the margin winding part 8 comprises the torque limiter 18, if the prescribed load is exceeded, the margin winding roller 16 slips, and the linear speed of the marginal portion wound by the margin winding roller 16 becomes the same as the linear speed of the label roll paper 2 wound by the winding roller 6.
Next, a margin cutoff detection process performed by the winding device is explained referring to
S1: In order to wind the label roll paper 2 by the winding roller 6, a user has a prescribed amount of the label roll paper 2 ejected from the printer 3, has the label roll paper 2 go through the tension bar 4 and the idle roller 5, and winds its leading edge on the winding roller 6 of the winding device 1 to set it into a state allowing the winding operation.
S2: Once the printer 3 starts printing (T1 shown in
The control part 14 judges whether the tension bar 4 has reached the lowest level by the tension bar sensors 10, and upon judging that it has reached the lowest level, changes the process over to S3.
S3: Upon judging that the tension bar 4 has reached the lowest level, the control part 14 rotationally drives the margin winding roller motor 17 to rotate the margin winding roller 16.
S4: Subsequently, the control part 14 rotationally drives the winding roller motor 15 (T2 shown in
S5: Because the control part 14 always keeps the winding speed of the winding roller 6 faster than the ejection speed of the label roll paper 2 from the printer 3, the tension bar 4 ascends by the wound label roll paper 2. In order to detect the highest position of the tension bar 4 that is the condition to stop winding the label roll paper 2, the control part 14 monitors the position of the tension bar 4 by the tension bar sensors 10.
The control part 14 judges by the tension bar sensors 10 whether the tension bar 4 has reached the highest level, and upon judging that it has reached the highest level, changes the process over to S6.
S6: Upon judging that the tension bar 4 has reached the highest level (T3 shown in
Because the printed label roll paper 2 continues to be ejected from the printer 3 even if the rotation of the winding roller 6 is stopped, the tension bar 4 placed on the upper face of the label roll paper 2 starts descending by its self weight.
S7: Upon stopping the rotation of the winding roller 6, the control part 14 performs margin cutoff detection to detect whether the marginal portion is cut off. Because the margin cutoff detection is difficult immediately after stopping the winding roller motor 15, the control part 14 stands by until first prescribed time passes since stopping the winding roller motor 15, and performs the margin cutoff detection after the first prescribed time has passed.
Considering the case where slack has occurred to the marginal portion peeled off the label roll paper 2 immediately after the winding roller motor 15 is stopped, the first prescribed time is time until the slack is dissolved on the margin winding roller 16 by the continued driving of the margin winding roller motor 17. The time is determined with considerations of the sheet carrying speed or the interval between rollers 7 and 8. When the carrying speed is around 150 mm/s, the actual time may be around 0.2 seconds.
As shown in
On the other hand, as shown in
In this manner, until the above-mentioned first prescribed time passes, in spite of being in a state where the marginal portion is not cut off, there is a possibility that the margin winding roller 16 keeps rotating until the slack of the marginal portion is dissolved, and that a margin cutoff is mistakenly detected. Therefore, until this first prescribed time passes, no margin cutoff detection is performed.
S8: Upon detecting the passage of first prescribed time, the control part 14 starts counting the number of changes in the outputs (changes between ON signal and OFF signal) of the slit sensors 20 (T4 shown in
S9: In order to detect the lowest position of the tension bar 4 that is the condition to start winding the label roll paper 2, the control part 14 monitors the position of the tension bar 4 by the tension bar sensors 10.
The control part 14 judges whether the tension bar 4 has reached the lowest level by the tension bar sensors 10, and upon judging that it has reached the lowest level, changes the process over to S10.
S10: Upon judging that the tension bar 4 has reached the lowest level, the control part 14 stops counting the number of changes in the outputs of the slit sensors 20, ending the margin cutoff detection (T5 shown in
S11: The control part 14 compares the counted number of changes in the outputs of the slit sensors 20 (margin cutoff detection count) and a threshold value for margin cutoff discernment. If it judges that the number of changes in the outputs of the slit sensors 20 is above the threshold value, it judges that a margin cutoff has occurred and changes the process over to S12, and if it judges that it is below the threshold value, it judges that no margin cutoff has occurred and changes the process over to S13.
If there is no margin cutoff occurrence, as shown in
On the other hand, if there is a margin cutoff occurrence, as shown in
Note that the threshold value for margin cutoff discernment is set to a value considering the fact that even if a margin cutoff occurs, it requires time for the rotation speed of the margin winding roller 16 to increase due to inertia if the marginal portion wound on the margin winding roller 16 has a large winding diameter and is heavy.
In this manner, if the rotation of the rotation shaft of the margin winding roller 16 is detected by the slit sensors 20 and the number of changes in the outputs of the slit sensors is above the threshold value in a state of having the winding operation of the winding roller 6 stopped and driving the margin winding roller 16 by the margin winding roller motor 17, the control part 14 judges that the marginal portion is cut off.
S12: Upon judging that the number of changes in the outputs of the slit sensors 20 is above the threshold value, the control part 14 judges that the margin winding roller 16 is rotating due to a margin cutoff occurrence, stops the margin winding roller motor 17 to stop the winding operation of the marginal portion, and ends this process.
S13: Upon judging that the number of changes in the outputs of the slit sensors 20 is below the threshold value, the control part 14 judges that no margin cutoff has occurred and rotationally drives the winding roller motor 15, rotates the winding roller 6, starts winding the label roll paper 2, and changes the process over to S5.
In this manner, the winding device 1 of this embodiment performs a margin cutoff detection process where it continues to drive rotationally the margin winding roller 16 that winds the marginal portion peeled off the label roll paper 2 even while winding the label roll paper 2 is stopped, detects by the outputs of the slit sensors 20 the rotation state whether the margin winding roller 16 is rotating, and if it judges that the margin winding roller 16 is rotating, detects that a margin cutoff has occurred.
Therefore, there is no need to modify the margin cutoff detection device according to the material or width of the marginal portion of the label roll paper, and the cutoff of the marginal portion can be detected without imposing any burden on the operator.
As explained above, in the first embodiment, the rotational drive of the margin winding roller that winds the marginal portion peeled off the label roll paper is continued even while winding of the label roll paper is stopped, the rotation state of the margin winding roller is detected by the sensors, and if it is judged that the margin winding roller is rotating, a margin cutoff occurrence is detected, thereby obtaining the effect that a cutoff of the marginal portion can be detected without imposing any burden on the operator.
Also, regardless of the material or width of the marginal portion, a margin cutoff occurrence can be detected, which allows notifying the operator or automatically stopping the winding device when a margin cutoff has occurred, thereby obtaining the effect to prevent incidences that decrease the work efficiency such as having to perform a margin winding work to wind up the marginal portion again because the label roll paper was wound up leaving the margin cutoff occurrence as it is.
Because the configuration of the winding device 1 in the second embodiment is the same as in the first embodiment mentioned above, the same codes are given and the explanation is omitted.
The actions of the second embodiment are explained.
Note that because the winding operations of the label roll paper and the marginal portion performed by the winding device are the same as in the first embodiment, their explanations are omitted.
The margin cutoff detection process performed by the winding device is explained referring to
S101-S103: Because these are the same processes as S1-S3 shown in
S104: The control part 14 rotationally drives the winding roller motor 15 (T12 shown in
S105: Because the control part 14 always sets the winding speed of the winding roller 6 faster than the ejection speed of the label roll paper 2 from the printer 3, the tension bar 4 ascends by the wound label roll paper 2.
Upon rotating the winding roller 6, the control part 14 performs margin cutoff detection to detect whether the marginal portion is cut off. Because the margin cutoff detection is difficult immediately after starting the rotation of the winding roller motor 15, the control part 14 stands by until second prescribed time passes since starting the rotation of the winding roller motor 15 and performs the margin cutoff detection after the second prescribed time has passed.
If the diameter or weight of the marginal portion wound by the margin winding roller 16 becomes large, even if a margin cutoff occurs, the increase in the rotation speed of the rotation shaft of the margin winding roller 16 becomes gradual. Therefore, the second prescribed time is time required for the rotation speed to increase to a prescribed rotation speed.
In this manner, until the above-mentioned second prescribed time passes, in spite of being in a state where the marginal portion is cut off, it is possible that the margin winding roller 16 does not come to have a speed above the prescribed rotation speed, and that the margin cutoff cannot be detected. Therefore, until this second prescribed time passes, no margin cutoff detection is performed.
S106: Upon detecting the passage of the second prescribed time, the control part 14 starts measuring time for one cycle of changes (e.g., the cycle of change from OFF signal to ON signal) in the outputs of the slit sensors 20 (T13 shown in
S107: In order to detect the highest position of the tension bar 4 that is the condition to stop winding the label roll paper 2, the control part 14 monitors the position of the tension bar 4 by the tension bar sensors 10.
The control part 14 judges whether the tension bar 4 has reached the highest level by the tension bar sensors 10, and upon judging that it has reached the highest level, changes the process over to S108.
S108: Upon judging that the tension bar 4 has reached the highest level, the control part 14 stops measuring the time for one cycle of changes in the outputs of the slit sensors 20 to end the margin cutoff detection (T14 shown in
Also, upon judging that the tension bar 4 has reached the highest level, the control part 14 stops the winding roller motor 15 to stop the rotation of the winding roller 6. Note that, at this time the control part 14 continues driving the margin winding roller motor 17 to continue rotating the margin winding roller 16.
Because the printed label roll paper 2 continues to be ejected from the printer 3 even after stopping the rotation of the winding roller 6, the tension bar 4 placed on the upper face of the label roll paper 2 starts descending by its self weight.
S109: The control part 14 compares the measured time for one cycle of changes in the outputs of the slit sensors 20 (one cycle time of margin cutoff detection) and the threshold value for the margin cutoff discernment. If it judges that the time for one cycle of changes in the outputs of the slit sensors 20 is below the threshold value, it judges that a margin cutoff has occurred and changes the process over to S110, and if it judges that it is above the threshold value, it judges that no margin cutoff has occurred and changes the process over to S111.
If no margin cutoff has occurred, as shown in
On the other hand, if a margin cutoff has occurred, as shown in
Note that the threshold value for margin cutoff discernment is set to a value considering the fact that the rotation speed of the rotation shaft of the margin winding roller 16 changes by the rotation speed of the winding roller 6 and the winding diameter of the marginal portion wound up by the margin winding roller 16 in the case where no margin cutoff has occurred, and the rotation speed of the rotation shaft of the margin winding roller 16 in the case where a margin cutoff has occurred.
In this manner, during the winding operation of the winding roller 6 and in a state where the margin winding roller 16 is driven by the margin winding roller motor 17, if the rotation speed of the rotation shaft of the margin winding roller 16 detected by the slit sensors 20 exceeds the threshold value, the control part 14 judges that the marginal portion is cut off.
S110: Upon judging that the time for one cycle of changes in the outputs of the slit sensors 20 is below the threshold value, the control part 14 judges that the margin winding roller 16 is rotating at the maximum speed in an idle rotation state because a margin cutoff has occurred, stops the margin winding roller motor 17 to stop the winding operation of the marginal portion, and ends this process.
S111: Upon judging that the time for one cycle of changes in the outputs of the slit sensors 20 is above the threshold value, the control part 14 judges that no margin cutoff has occurred and monitors the position of the tension bar 4 by the tension bar sensors 10 in order to detect the lowest position of the tension bar 4 that is the condition to start winding the label roll paper 2.
The control part 14 judges by the tension bar sensors 10 whether the tension bar 4 has reached the lowest level, and upon judging that it has reached the lowest level, changes the process over to S104.
In this manner, the winding device 1 of this embodiment performs a margin cutoff detection process where it rotationally drives the margin winding roller 16 that winds the marginal portion peeled off the label roll paper 2 while winding the label roll paper 2, detects the rotation speed of the margin winding roller 16 based on the outputs of the slit sensors 20, and upon judging that the margin winding roller 16 is rotating at a faster rotation speed than the prescribed rotation speed, detects that a margin cutoff has occurred.
Therefore, there is no need to modify the margin cutoff detection device according to the material or width of the marginal portion of the label roll paper, and a cutoff of the marginal portion can be detected without imposing any burden on the operator.
As explained above, in the second embodiment, the margin winding roller that winds the marginal portion peeled off the label roll paper is rotationally driven while winding the label roll paper, the rotation speed of the margin winding roller is detected by the sensors, and upon judging that the margin winding roller is rotating at a faster rotation speed than the prescribed rotation speed, a margin cutoff occurrence is detected, thereby obtaining the effect that a cutoff of the marginal portion can be detected without imposing any burden on the operator.
The configuration of the third embodiment is different from the configuration of the first embodiment in that the control part is provided with a load current detection part. The configuration of the third embodiment is explained based on a block diagram in
In
Also, the control part 14 is provided with the load current detection part 141 as a detection means that detects the rotation of the margin winding roller 16 shown in
The margin winding roller motor 17 of this embodiment is a motor (e.g., a DC motor) whose load current varies according to the load, and the load current detection part 141 detects the load current value when the margin winding roller motor 17 is driven. If the load current value is above a threshold value, it detects that the margin winding roller 16 shown in
Note that the winding device 1 of this embodiment may have a configuration without the slit sensors 20 provided.
Actions of the above-mentioned configuration are explained.
Note that because the winding operations of the label roll paper and the marginal portion performed by the winding device are the same as in the first embodiment, their explanations are omitted.
The margin cutoff detection process performed by the winding device is explained referring to
S201-S207: Because these are the same processes as S1-S7 shown in
S208: Upon detecting the passage of the first prescribed time, the control part 14 starts monitoring the load current of the margin winding roller motor 17 by the load current detection part 141 (T24 shown in
S209: In order to detect the lowest position of the tension bar 4 that is the condition to start winding the label roll paper 2, the control part 14 monitors the position of the tension bar 4 by the tension bar sensors 10.
The control part 14 judges by the tension bar sensors 10 whether the tension bar 4 has reached the lowest level, and upon judging that it has reached the lowest level, changes the process over to S210.
S210: Upon judging that the tension bar 4 has reached the lowest level, the control part 14 stops monitoring the load current of the margin winding roller motor 17 by the load current detection part 141, and ends the margin cutoff detection (T25 shown in
If no margin cutoff has occurred, as shown in
On the other hand, if a margin cutoff has occurred, as shown in
Note that the current threshold value for margin cutoff discernment is set to a value considering the fact that if the marginal portion wound up by the margin winding roller 16 has a large winding diameter and is heavy, even if a margin cutoff occurs, a load by its inertia is placed on the margin winding roller 16.
S212: Upon judging that the load current value of the margin winding roller motor 17 detected by the load current detection part 141 is below the threshold value, the control part 14 judges that the margin winding roller 16 is rotating because a margin cutoff has occurred, stops the margin winding roller motor 17 to stop the winding operation of the marginal portion, and ends this process.
S213: Upon judging that the load current value of the margin winding roller motor 17 detected by the load current detection part 14 is above the threshold value, the control part 14 judges that no margin cutoff has occurred, rotationally drives the winding roller motor 15, rotates the winding roller 6, starts winding the label roll paper 2, and changes the process over to S205.
In this manner, the winding device 1 of this embodiment performs a margin cutoff detection process where it continues to drive rotationally the margin winding roller 16 that winds the marginal portion peeled off the label roll paper 2 even while winding the label roll paper 2 is stopped, indirectly detects the rotation state whether the margin winding roller 16 is rotating based on the load current value for the load placed on the margin winding roller motor 17, and if it judges that the margin winding roller 16 is rotating, detects that a margin cutoff has occurred.
Therefore, there is no need to modify the margin cutoff detection device according to the material or width of the marginal portion of the label roll paper, and a cutoff of the marginal portion can be detected without imposing any burden on the operator.
As explained above, in the third embodiment, the rotational drive of the margin winding roller that winds the marginal portion peeled off the label roll paper is continued even while winding of the label roll paper is stopped, the rotation state of the rotation shaft of the margin winding roller is detected based on the load current value of the margin winding roller motor, and if it is judged that the margin winding roller is rotating, a margin cutoff occurrence is detected, thereby obtaining the effect that a cutoff of the marginal portion can be detected without imposing any burden on the operator.
Number | Date | Country | Kind |
---|---|---|---|
2016-013970 | Jan 2016 | JP | national |