The invention relates to an apparatus for winding slit webs about a winding shaft after slitting the web in a slitter. The web comprises a plastic film or the like.
It is often in the slitter that the winding shaft is disposed between and supported by a pair of side plates. The winding shaft is rotated by a drive motor to wind slit webs about the winding shaft after slitting the web. The web comprises a plastic film or the like.
It has recently been required to slit a web which is wide, and then wind the webs in the slitter. However, in case of the web which is wide, the winding shaft must be long to wind the webs about the winding shaft. The winding shaft may therefore be weighed down between the side plates due to the length of the winding shaft, making it difficult to wind the webs reliably. In addition, the winding shaft must be heavy in weight in proportion to the length thereof. It is therefore difficult to make the winding shaft moved axially thereof and extracted and separated from winding products after winding. The winding shaft must be moved for a long stroke corresponding to the width of the web, to be extracted from the winding products, taking labor and time.
It is therefore an object of the invention to provide an apparatus for winding slit webs about a winding shaft after slitting the web in a slitter, the winding shaft being disposed between and supported by a pair of side plates, which can wind the webs reliably and then make the winding products and the winding shaft separated from each other without difficulty, even if the web is wide.
According to the invention, the winding shaft is divided axially thereof and into two divided shafts which are supported by an intermediate support member positioned between the divided shafts, to wind the webs about the divided shafts. The divided shafts are moved axially thereof and apart from each other to be extracted from winding products after winding.
In a preferred embodiment, each of the side plates is provided with a drive motor connected to the divided shaft. The divided shaft includes an end provided with a bearing box and disposed at the position of intermediate support member, the bearing box being supported by the intermediate support member. The divided shaft is rotated by the drive motor to wind the webs. Each of the side plates is moved axially of the winding shaft after winding. The divided shaft is drawn by the side plate so that the bearing box can be drawn from the intermediate support member. The divided shaft is then extracted from the winding products.
Each of the divided shafts may be supported by the side plate for turning movement about a vertical axis. The divided shaft is turned about the vertical axis after winding the webs. Winding products are then extracted from the divided shaft.
The divided shaft may include an end provided with a bearing box and disposed at the position of intermediate support member, the bearing box being supported by the intermediate support member. The divided shaft is turned about the vertical axis after winding so that the bearing box can be drawn from the intermediate support member.
Referring now to the drawings,
Each of the apparatus includes a contact roller 4 supported by arms 5. The apparatus further includes a winding shaft 6 disposed between and supported by a pair of side plates 7, as shown in
In the apparatus, the winding shaft 6 is divided axially thereof and into two divided shafts which are supported by an intermediate support member 14 positioned between the divided shafts 6, to wind the webs 1 about the divided shafts 6. In the embodiment, each of the side plates 7 is provided with a drive motor 15. The drive motor 15 is connected to the divided shaft 6 through a belt or chain 16. The divided shaft 6 includes an end provided with a bearing box 17 and disposed at the position of intermediate support member 14, as shown in
The side plates 7 are a type of suspension suspended from and supported by a rail 19 for movement along the rail 19. The rail 19 extends axially of the winding shaft 6. The intermediate support member 14 is also suspended from and supported by the rail 19. In addition, auxiliary support members 20 are disposed between the side plates 7 and the intermediate support member 14 and suspended from and supported by the rail 19. Each of the divided shafts 6 includes a bearing box 21 disposed in position, as shown in
The divided shafts 6 are moved axially thereof and apart from each other to be extracted from winding products 10 after winding the webs 1. In the embodiment, operators make the auxiliary support members 20 turned about the rail 19 after winding, to be retracted from the divided shafts 6 and the winding products 10. Operators then make the winding products 10 moved widthwise thereof along the divided shafts 6 and toward the intermediate support member 14, as shown in
Accordingly, the apparatus has no problem even if the web 1 is wide. The winding shaft 6 is long to wind the webs 1 about the winding shaft 6. In this connection, it should be recognized that the winding shaft 6 is divided axially thereof and into two divided shafts, as described above. The winding shaft 6 is supported by the intermediate support member 14, as also described above. The winding shaft 6 is therefore kept from being weighed down between the side plates 7 regardless of the length of the winding shaft 6, to wind the webs reliably. In addition, the divided shafts 6 are supported by the auxiliary support members 20 to be kept from being weighed down between the side plates 7. Furthermore, it is merely required to make not all the winding shaft but each of the divided shafts 6 moved axially thereof and extracted from the winding products 10 after winding the webs 1. In this connection, it should be recognized that the divided shaft 6 is light in weight which is half as much as the winding shaft. In addition, it is merely required to make the divided shaft 6 moved for a short stroke. The apparatus can therefore make the winding products 10 and the winding shaft 6 separated from each other without difficulty.
Furthermore, in the embodiment of
In the embodiment of
Operators make the divided shafts 6 turned about the vertical axis 25 after winding the webs 1 so that the bearing boxes 17 can be drawn from the intermediate support member 14. The divided shafts 6 and the winding products 10 protrude in front and the rear of the slitter when the divided shafts 6 have been turned in each of the apparatus, as shown in
Accordingly, the winding shaft 6 is supported by the intermediate support member 14 to be kept from being weighed down between the side plates 7 even if the web 1 is wide, to wind the webs reliably. The winding products 10 are extracted from the divided shafts 6 in front and the rear of the slitter after winding the webs 1, to make the winding products 10 and the winding shaft 6 separated from each other without difficulty.
According to the invention, the winding shaft can be kept from being weighed down between the side plates to wind the webs reliably even if the web is wide, as described above. Furthermore, the apparatus can make the winding products and the winding shaft separated from each other without difficulty.
Number | Date | Country | Kind |
---|---|---|---|
2002-138806 | May 2002 | JP | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/JP03/05068 | 4/21/2003 | WO |