1. Field of the Invention
This invention relates to switched-mode power converters and more specifically to an improved winding structure for the magnetic core that reduces eddy currents.
2. Description of the Related Art
Power converters are key components in many military and commercial systems and often govern size and performance. Power density, efficiency and reliability are key characteristics used to evaluate the characteristics of power converters. Transformers and inductors used within these power converters may be large and bulky and often limit their efficiency, power density and reliability. These deficiencies can be improved by using a high-frequency “switch-mode” architecture instead of traditional step-down configuration and by replacing conventional core-and-coil designs with “planar integrated magnetics.”
Planar integrated magnetics offer several advantages, especially for low-power dc-dc converter applications, such as low converter profile, improved power density and reliability, reduced cost due to the elimination of discrete magnetic components, and close coupling between different windings. For example, the integrated magnetics 10 shown in
As shown in
The converter efficiency depends on a number of factors, including the DC and AC resistance of the windings. The DC resistance is essentially determined by the cross section of the winding. To minimize the DC resistance, the windings typically almost fill the core window, having a minimal spacing of about 10 mils from the center and outer legs. The AC resistance is a function of skin depth at a given frequency and magnetic field impinging on the windings, which leads to non-uniform currents and eddy currents that may circulate in the windings. The impedance of the winding in the layered stack determines the current it carries. To minimize the AC resistance, the core and winding structure should be designed to avoid eddy currents, the fringing magnetic field on the winding should be minimized, and the winding impedances should be balanced to ensure equal current sharing.
However, as layers are added to provide the additional windings, which are required at higher output currents to reduce net dc winding resistance, to increase the core window area utilization or to interleave primary and secondary windings, the thickness of the multi-layer PCB increases. Some of the windings layers will inevitably be close to the air gap 32 where the strong fringing flux surrounding the air gap will induce eddy currents in the windings and also lead to non-uniform winding impedance. This in turn increases total winding losses and lowers converter efficiency.
As shown in
The present invention provides a winding structure for planar magnetics used in switched-mode power converters that improves converter efficiency and core utilization by reducing eddy current losses and improving the uniformity of the current in the secondary windings.
This is accomplished by forming “cutout” and/or “keep away” regions in the windings around the outer or center legs to keep both the AC and DC winding resistances low. The keep away regions are formed at the exterior edge of the winding nearest the center leg and serve to space the winding further away from the strongest leakage fields or fringing field. The cutouts are formed in the interior of the winding and serve to form an “island” in the winding that disrupts the induced eddy currents in the presence of moderate fields. The cutouts and keep away regions need only be formed on the portions of the windings near the center leg and in the windings nearest the air gap.
The air gap creates a fringing field whose strength decreases as it moves down and away from the air gap. Consequently when a plurality of windings are formed on the multiple layers of a printed circuit board, any of the windings that lie within a first multiple of a length of the air gap measured from the plate are formed with both an interior cutout and an exterior keep away region. Any of the windings that lie between the first multiple and a second multiple are formed with only an interior cutout. Finally, any remaining windings that lie outside the second multiple have neither interior cutouts nor exterior keep away regions. Typical values for the first and second multiples are five and ten, respectively. By configuring the stack of windings in this manner, the net AC and DC winding resistance remain low, losses due to eddy currents are minimized and the current through the windings is approximately uniform. As a result, the different windings are shielded from the deleterious effects of the fringing field.
These and other features and advantages of the invention will be apparent to those skilled in the art from the following detailed description of preferred embodiments, taken together with the accompanying drawings, in which:
a and 2b, as described above, are perspective and section views of a planar magnetic structure using conventional horizontal windings;
a and 5b are sectional and plan views of the planar magnetic structures in which “cutout” and “keep away” regions have been etched in the horizontal windings to reduce eddy current;
The present invention modifies the conventional winding structure for planar integrated magnetics by etching cutout and/or keep away regions in the planar copper windings near the center leg. By accepting a marginal increase in the DC winding resistance, we are able to drastically reduce the AC winding resistance and the eddy current losses in the presence of a leakage field by at least 25%. The net result is improved current uniformity with lower losses, hence higher converter efficiency. Because the strength of the fringing flux decreases as you move down and away from the air gap, windings closest to the air gap are formed with both keep away regions and cutouts. Windings a little further away are formed with only cutouts and the windings furthest away are unchanged. The precise configuration is determined by the core structure, air gap and winding arrangements to optimize converter efficiency.
By way of example, the improved winding arrangement was implemented and compared to a conventional winding arrangement for a 100 W 1.5V output dc-dc converter for a 36-72V input. This design requires a winding arrangement with a 4:1 turns ratio including 4 primary windings connected in series and 5 secondary windings connected in parallel to support the required current. An optional inductor winding around the center leg was not implemented. The core is a standard gapped E-I core. An air gap of 0.25-0.30 mm was used due to the level of DC magnetic flux in the core center leg. The air gap and leakage inductance produce a fringing field that penetrates deep into the winding region. The copper cutouts and keep away regions are estimated to reduce winding losses by at least 25% and improve current uniformity. The conventional approach to avoid these losses would be to increase the size of the magnetic core to move the air gap sufficiently far away from the windings. Unfortunately this increases size, weight and cost significantly.
The winding arrangements described herein can be used in a wide range of switch-mode power converters including isolated and non-isolated current doubler rectifier (CDR) circuits, and boost and buck converters, as well as others. Furthermore, the winding arrangement can be implemented with a number of magnetic core configurations including standard E-I and E-E cores as well as matrix integrated magnetics (MIM) cores of the type described in copending U.S. Patent applications “Core Structure,” filed Apr. 18, 2002 and “Extended E Matrix Integrated Magnetics (MIM) Core” filed Aug. 19, 2004, which are hereby incorporated by reference.
A winding arrangement 50 for an integrated magnetic structure 52 for use in an isolated CDR is shown in
To reduce the eddy currents induced in the windings by the fringing flux emanating from the air gap 64, keep away regions 74 and/or cutouts 76 are etched in the portion of the copper windings 66 and 68 on the PCB layers that lie within the core window areas. The keep away regions in the exterior edge 78 of the winding nearest the center leg are suitably 10 times the air gap length near the center leg 58 and serve to space the winding edge away from the air gap. No cutouts or keep away regions are necessary in those portions of the windings that lie outside the core window area. Windings are typically spaced about 10 mils from the center leg. The keep away region extends to about 55 mils from the center leg to the copper winding edge in the core window. The cutouts are formed in an interior 80 of the winding and span the core's horizontal window 82 to form an “island” 84 in the winding that disrupts the induced eddy currents. In this example, the cutout 76 is approximately 5 mils wide and the island is about 45 mils wide. The dimensions of the cutout are essentially constrained by the capabilities of the etching equipment. The dimensions of the island are dictated by the frequency of the switch-mode power converter, the output current, and the air-gap length. The cutouts and keep away regions need only be formed on the portions of the windings near the center leg. In this example, working from left-to-right on windings S5 and P4, the left edge of the winding is spaced approximately 10 mils from first outer leg 56 and spans a width of 147 mils to the 5 mil cutout 76, 45 mil island 84 and lastly the 55 mils keep away region 74 to center leg 58. The other sides of the windings away from the center leg do not require etching. In fact, etching portions of the winding not close to the air gap would have no beneficial effect on AC winding resistance and would increase the DC winding resistance. Accordingly, any windings around outer legs are asymmetric about those legs.
Because the strength of the fringing flux decreases as one moves down and away from the air gap 64, the windings S5 and P4 closest to the air gap are formed with both keep away regions 74 and cutouts 76. Near the gap, a slight increase in DC resistance is more than offset by the reduction in eddy current losses. Windings S4, P3, S3, P2 and S2 that lie a little further away are formed with only cutouts 76 to balance the effects of an increase in DC resistance against the effects on AC resistance. Finally, the windings P1 and S2 furthest away would see only a minimal benefit to AC resistance and thus are unchanged. The precise configuration is determined by the core structure, air gap, winding arrangements, converter specifications and switching frequency.
More specifically, any windings that lie within a first multiple of a length of the air gap (Lg) measured from the plate, e.g. 5 Lg, are exposed to the strongest fringing field, and hence are formed with both keep away regions and cutouts. Windings that lie between first and second multiples, e.g. 5-10 Lg, see less but still significant fringing field and are formed with only cutouts. The remaining windings are far enough away that the induced eddy currents are negligible. By configuring the stack of windings in this manner, the losses due to eddy currents are minimized and the current is approximately uniform in parallel-connected windings. As a result, the currents flowing through the different windings have lower losses. Furthermore, more windings can be implemented in the same core size, utilizing 80-90% of the available vertical window area 86.
As shown in
In some winding arrangements, the center leg 58 is wound to provide an inductor winding 90, designated L1, as shown in
While several illustrative embodiments of the invention have been shown and described, numerous variations and alternate embodiments will occur to those skilled in the art. Such variations and alternate embodiments are contemplated, and can be made without departing from the spirit and scope of the invention as defined in the appended claims.
Number | Name | Date | Kind |
---|---|---|---|
1376978 | Stoekle | May 1921 | A |
3358210 | Grossoehme | Dec 1967 | A |
3433998 | Woelber | Mar 1969 | A |
3622868 | Todt | Nov 1971 | A |
3681679 | Chung | Aug 1972 | A |
3708744 | Stephens et al. | Jan 1973 | A |
4019122 | Ryan | Apr 1977 | A |
4075547 | Wroblewski | Feb 1978 | A |
4327348 | Hirayama | Apr 1982 | A |
4471423 | Hase | Sep 1984 | A |
4499481 | Greene | Feb 1985 | A |
4570174 | Huang et al. | Feb 1986 | A |
4577268 | Easter et al. | Mar 1986 | A |
4581691 | Hock | Apr 1986 | A |
4636823 | Margalit et al. | Jan 1987 | A |
4660136 | Montorefano | Apr 1987 | A |
4823249 | Garcia, II | Apr 1989 | A |
4887061 | Matsumura | Dec 1989 | A |
4899271 | Seiersen | Feb 1990 | A |
4903089 | Hollis et al. | Feb 1990 | A |
4999759 | Cavagnolo et al. | Mar 1991 | A |
5027264 | DeDoncker et al. | Jun 1991 | A |
5068756 | Morris et al. | Nov 1991 | A |
5106778 | Hollis et al. | Apr 1992 | A |
5126714 | Johnson | Jun 1992 | A |
5132888 | Lo et al. | Jul 1992 | A |
5134771 | Lee et al. | Aug 1992 | A |
5206621 | Yerman | Apr 1993 | A |
5223449 | Morris et al. | Jun 1993 | A |
5231037 | Yuan et al. | Jul 1993 | A |
5244829 | Kim | Sep 1993 | A |
5291382 | Cohen | Mar 1994 | A |
5305191 | Loftus, Jr. | Apr 1994 | A |
5335163 | Seiersen | Aug 1994 | A |
5336985 | McKenzie | Aug 1994 | A |
5342795 | Yuan et al. | Aug 1994 | A |
5369042 | Morris et al. | Nov 1994 | A |
5374887 | Drobnik | Dec 1994 | A |
5407842 | Morris et al. | Apr 1995 | A |
5468661 | Yuan et al. | Nov 1995 | A |
5508903 | Alexndrov | Apr 1996 | A |
5554561 | Plumton | Sep 1996 | A |
5555494 | Morris | Sep 1996 | A |
5610085 | Yuan et al. | Mar 1997 | A |
5624860 | Plumton et al. | Apr 1997 | A |
5663876 | Newton et al. | Sep 1997 | A |
5700703 | Huang et al. | Dec 1997 | A |
5712189 | Plumton et al. | Jan 1998 | A |
5719544 | Vinciarelli et al. | Feb 1998 | A |
5734564 | Brkovic | Mar 1998 | A |
5736842 | Jovanovic | Apr 1998 | A |
5742491 | Bowman et al. | Apr 1998 | A |
5747842 | Plumton | May 1998 | A |
5756375 | Celii et al. | May 1998 | A |
5760671 | Lahr et al. | Jun 1998 | A |
5783984 | Keuneke | Jul 1998 | A |
5784266 | Chen | Jul 1998 | A |
5804943 | Kollman et al. | Sep 1998 | A |
5815386 | Gordon | Sep 1998 | A |
5870299 | Rozman | Feb 1999 | A |
5886508 | Jutras | Mar 1999 | A |
5889298 | Plumton et al. | Mar 1999 | A |
5909110 | Yuan et al. | Jun 1999 | A |
5910665 | Plumton et al. | Jun 1999 | A |
5920475 | Boylan et al. | Jul 1999 | A |
5925088 | Nasu | Jul 1999 | A |
5933338 | Wallace | Aug 1999 | A |
5940287 | Brkovic | Aug 1999 | A |
5956245 | Rozman | Sep 1999 | A |
5956578 | Weitzel et al. | Sep 1999 | A |
5999066 | Saito et al. | Dec 1999 | A |
6008519 | Yuan et al. | Dec 1999 | A |
6011703 | Boylan et al. | Jan 2000 | A |
6038154 | Boylan et al. | Mar 2000 | A |
6067237 | Nguyen | May 2000 | A |
6069799 | Bowman et al. | May 2000 | A |
6084792 | Chen et al. | Jul 2000 | A |
6094038 | Lethellier | Jul 2000 | A |
6097046 | Plumton | Aug 2000 | A |
6156611 | Lan et al. | Dec 2000 | A |
6163466 | Davila, Jr. et al. | Dec 2000 | A |
6181231 | Bartilson | Jan 2001 | B1 |
6188586 | Farrington et al. | Feb 2001 | B1 |
6191964 | Boylan et al. | Feb 2001 | B1 |
6208535 | Parks | Mar 2001 | B1 |
6215290 | Yang et al. | Apr 2001 | B1 |
6218891 | Lotfi et al. | Apr 2001 | B1 |
6229197 | Plumton et al. | May 2001 | B1 |
6309918 | Huang et al. | Oct 2001 | B1 |
6320490 | Clayton | Nov 2001 | B1 |
6323090 | Zommer | Nov 2001 | B1 |
6348848 | Herbert | Feb 2002 | B1 |
6351396 | Jacobs | Feb 2002 | B1 |
6356462 | Jang et al. | Mar 2002 | B1 |
6362986 | Schultz et al. | Mar 2002 | B1 |
6380836 | Matsumoto et al. | Apr 2002 | B2 |
6388898 | Fan et al. | May 2002 | B1 |
6392902 | Jang et al. | May 2002 | B1 |
6414578 | Jitaru | Jul 2002 | B1 |
6477065 | Parks | Nov 2002 | B2 |
6483724 | Blair et al. | Nov 2002 | B1 |
6489754 | Blom | Dec 2002 | B2 |
6498367 | Chang et al. | Dec 2002 | B1 |
6501193 | Krugly | Dec 2002 | B1 |
6512352 | Qian | Jan 2003 | B2 |
6525603 | Morgan | Feb 2003 | B1 |
6539299 | Chatfield et al. | Mar 2003 | B2 |
6549436 | Sun | Apr 2003 | B1 |
6661276 | Chang | Dec 2003 | B1 |
6683797 | Zaitsu et al. | Jan 2004 | B2 |
6696910 | Nuytkens et al. | Feb 2004 | B2 |
6731486 | Holt et al. | May 2004 | B2 |
6741099 | Krugly | May 2004 | B1 |
6753723 | Zhang | Jun 2004 | B2 |
6765810 | Perry | Jul 2004 | B2 |
6775159 | Webb et al. | Aug 2004 | B2 |
6867678 | Yang | Mar 2005 | B2 |
6873237 | Chandrasekaran et al. | Mar 2005 | B2 |
6944033 | Xu et al. | Sep 2005 | B1 |
6980077 | Chandrasekaran et al. | Dec 2005 | B1 |
7012414 | Mehrotra et al. | Mar 2006 | B1 |
7034586 | Mehas et al. | Apr 2006 | B2 |
7046523 | Sun et al. | May 2006 | B2 |
7076360 | Ma | Jul 2006 | B1 |
20020114172 | Webb et al. | Aug 2002 | A1 |
20030197585 | Chandrasekaran et al. | Oct 2003 | A1 |
20030198067 | Sun et al. | Oct 2003 | A1 |
20050024179 | Chandrasekaran et al. | Feb 2005 | A1 |
20060038549 | Mehrotra et al. | Feb 2006 | A1 |
20060038650 | Mehrotra et al. | Feb 2006 | A1 |
20060187684 | Chandrasekaran et al. | Aug 2006 | A1 |
20060197510 | Chandrasekaran | Sep 2006 | A1 |
20060198173 | Rozman | Sep 2006 | A1 |
20060226477 | Brar et al. | Oct 2006 | A1 |
20060226478 | Brar et al. | Oct 2006 | A1 |
20060255360 | Brar et al. | Nov 2006 | A1 |
Number | Date | Country |
---|---|---|
2000-68132 | Mar 2000 | JP |
Number | Date | Country | |
---|---|---|---|
20060038649 A1 | Feb 2006 | US |