The present invention relates generally to winding and dispensing systems, more particularly to winding and dispensing systems that when unwound has little or essentially no twist.
There are many markets that have a need for smaller amounts of elongated elements such as pull tapes in an easy to use, transport, and dispense container. When these elongated elements are pulled from the end of a spool (or spool like configuration) from the container, the elongated element has twists which makes the use of the elements more difficult. There is a need for a winding and dispensing system that when unwound has little or essentially no twist.
A dispenser system containing a container and a single elongated element. The container has an inner surface, an outer surface, and at least one opening, and is configured to enclose a volume. The single elongated element has two ends and is rotationally wound in a first direction into a hollow cylinder having a central axis. The hollow cylinder is a three-dimensional region bounded by inner and outer concentric cylindrical sections and two parallel annular bases perpendicular to the central axis. The hollow cylinder is located within the volume of the container and the hollow cylinder and container are configured such that the single elongated element is unwound from the hollow cylinder from one of the annular bases approximately parallel to the central axis. The single elongated element has a twist in a second direction opposite to the first direction such that when the single elongated element is unwound it has essentially no twist.
A winding system containing a let off stand, a winding coordinator, and a wind-up stand. The left off stand contains a tape holder and a generally planar base, where the tape holder is configured to hold a single elongated element and the base rotates in a first direction within the plane of the base. The winding coordinator contains a generally planar section having an opening for an elongated element and rotates in a second direction opposite to the first direction. The wind-up stand contains a spool core.
A method of winding beginning by unwinding a single elongated element from a tape holder stand, where the tape holder stand comprises a tape holder and a generally planar base. The tape holder is configured to hold elongated elements and the base rotates in a first direction within the plane of the base. The method also contains the step of passing the single elongated element through a winding coordinator containing a generally planar section having an opening which the single elongated element passes through. The generally planar section rotates in a second direction opposite to the first direction and the let off roll and the winding coordinator rotate at approximately the same frequency. The method also contains the step of circumferentially winding the single elongated element on a wind-up stand containing a spool core forming a hollow cylinder. The hollow cylinder has a central axis and is a three-dimensional region bounded by inner and outer concentric cylindrical sections and two parallel annular bases perpendicular to the central axis. The single elongated element contains a plurality of twists, approximately one twist for each full circumferential winding rotation of the single elongated element within the hollow cylinder.
The present invention is best understood with reference to the following detailed description of embodiments of the invention when read in conjunction with the attached drawings, in which like numerals refer to like elements, and in which:
Referring now to
The container 100 may be any suitable shape and made from any suitable material. The container should be large enough to hold the entire elongated element 200 and protect the element 200 from the environment (such as rain and dirt). In one embodiment, the container may be cylindrical such as a bucket or pail or may be rectangular cuboid. The container may be any suitable material such as plastic, cardboard, metal, or a combination thereof. In addition, material may be added to the container between the element 200 and the inner surface of the container to fill any voids and keep the element 200 stable within the container.
The single elongated element 200 may be any suitable elongated element such as wires, pull tapes, pull ropes, ribbons, and cables. In a preferred embodiment, the single elongated element 200 is a tape element. Tape elements are used as pull tapes which are typically tightly woven, relatively flat strips of material used typically for pulling cables through the channels. They typically have a rectangular cross-sectional shape. In one embodiment, the pull lines are formed of tightly woven, polyester material, which exhibits a tensile strength of between about 400 pounds and about 3,000 pounds. Pull cords (or ropes) having a substantially round cross-section may be used successfully with smaller diameter cables.
The single elongated element 200 has two ends and is rotationally wound in a first direction into a hollow cylinder having a central axis. The shape that is formed by the wound elongated element 200 is a hollow cylinder 210 such as shown enlarged in
In a typical hollow cylinder 210, when the elongated element 200 is pulled from one of the annular bases, the element would have a twist in it (approximately one twist per revolution of the cylinder. In the invention, the single elongated element 200 in the hollow cylinder 210 has a twist in a second direction opposite to the first direction such that when the single elongated element is unwound it has essentially no twist. “Essentially no twist” in this application is defined to mean less than 3 twists per linear foot. In a more preferred embodiment, the unwound elongated element 200 has less than 2 twists per linear foot, more preferably less than 1 twist per linear foot. Preferably, the single elongated element 200 contains approximately 1 twist per revolution of winding around the hollow cylinder 210.
Sometimes when referring to twist, the designation of an s direction and a z direction is used. Using these designations, the elongated element 200 is wound in a first direction, the “s” direction, to form the cylinder 210 and the elongated element has a twist in the second direction, the “z” direction, to counteract the “s” direction so that when the element 200 is unwound it has essentially no twist. The nomenclature may also be used in reverse with the elongated element being wound in the “z” direction and the element having twist in the “s” direction.
In one embodiment, the hollow cylinder 210 contains a spool. This spool may be used to wind the elongated element 200 into the hollow cylinder 210 and it may be removed after winding or left in place depending on the end use and container 100 configuration. The single elongated element 200 may be wound into the hollow cylinder in any suitable method. In one embodiment, the element 200 is stack wound to form the hollow cylinder 210. In another embodiment, the element 200 is cross wound to form the hollow cylinder 210.
The tape holder 310 is configured to hold the single elongated element and may have any suitable shape. In one embodiment, the tape holder 310 is a box which holds the element 200 in a loose or folded manner. In another embodiment (shown in
In the embodiment where the left off stand 300 holds a master roll, the tape holder 310 is a roll holder to hold a let off roll. The let off roll has a generally cylindrical shape, a central axis, and a first and second parallel annular bases perpendicular to the central axis. The roll holder comprises a first leg 311 configured to engage the let off roll at the first annular base and a second leg 313 configured to engage the let off roll at the second annular base such that the let off roll is able to rotate circumferentially about the central axis of the roll. The base 320 is generally perpendicular to the first leg 311 and second leg 313 and is generally parallel to the central axis of the let off roll. Preferably, the element 200 is left off of the roll from the sides of the roll (preferably not from one of the annular bases).
After the single elongated element 200 is released from the let off stand 300, it passes through a winding coordinator 400. The winding coordinator 400 comprises a generally planar section having an opening 410 for the elongated element 200. The role of the winding coordinator is to twist the elongated element 200 the correct amount such that when it is wound up into the cylinder 210 it has an amount of twist in a first direction that when it is then unwound from one of the annular bases, the elongated element has essentially no twist. In the embodiment where the elongated element 200 is a pull tape or other flat tape like article, the opening 410 is preferably slit shaped.
The winding coordinator 400 rotates in a second direction opposite to the first direction (direction that the let off stand 300 is rotating). The let off stand 300 rotating is to counteract the rotation of the winding. In the winding system 900, the base of the left off stand 300 rotates in the first direction with a first frequency and the generally planar section of the winding coordinator 400 rotates in the second direction with a second frequency. Preferably, these first and second frequencies are approximately equal as to keep twists from building up in the element 200 between the let off stand 300 and the winding coordinator 400.
After the elongated element 200 has the proper amount of twist imparted by the winding coordinator 400, it is circumferentially wound onto a wind-up stand 500 which contains a spool core to create the hollow cylinder 210. The hollow cylinder 210 may be removed from the spool core or the spool core may be left in the hollow cylinder 210. The hollow cylinder being a three-dimensional region bounded by inner and outer concentric cylindrical sections and two parallel annular bases perpendicular to the central axis, wherein the single elongated element comprises a plurality of twists, approximately one twist for each full circumferential winding rotation of the single elongated element within the hollow cylinder.
After the hollow cylinder 210 is completely formed, it is packaged within the container 100 to form the dispenser system 10. The cylinder may be wrapped with plastic or other material before being loaded into the container. In addition, the container 100 may contain materials to hold the cylinder 210 in place within the container 100 such as foam, tabs, or rods between the inner surface of the container and the outside of the cylinder. The single elongated element 200 may be wound into the hollow cylinder 210 in any suitable method. In one embodiment, the element 200 is stack wound to form the hollow cylinder 210. In another embodiment, the element 200 is cross wound to form the hollow cylinder 210.
All references, including publications, patent applications, and patents, cited herein are hereby incorporated by reference to the same extent as if each reference were individually and specifically indicated to be incorporated by reference and were set forth in its entirety herein.
The use of the terms “a” and “an” and “the” and similar referents in the context of describing the invention (especially in the context of the following claims) are to be construed to cover both the singular and the plural, unless otherwise indicated herein or clearly contradicted by context. The terms “comprising,” “having,” “including,” and “containing” are to be construed as open-ended terms (i.e., meaning “including, but not limited to,”) unless otherwise noted. Recitation of ranges of values herein are merely intended to serve as a shorthand method of referring individually to each separate value falling within the range, unless otherwise indicated herein, and each separate value is incorporated into the specification as if it were individually recited herein. All methods described herein can be performed in any suitable order unless otherwise indicated herein or otherwise clearly contradicted by context. The use of any and all examples, or exemplary language (e.g., “such as”) provided herein, is intended merely to better illuminate the invention and does not pose a limitation on the scope of the invention unless otherwise claimed. No language in the specification should be construed as indicating any non-claimed element as essential to the practice of the invention.
Preferred embodiments of this invention are described herein, including the best mode known to the inventors for carrying out the invention. Variations of those preferred embodiments may become apparent to those of ordinary skill in the art upon reading the foregoing description. The inventors expect skilled artisans to employ such variations as appropriate, and the inventors intend for the invention to be practiced otherwise than as specifically described herein. Accordingly, this invention includes all modifications and equivalents of the subject matter recited in the claims appended hereto as permitted by applicable law. Moreover, any combination of the above-described elements in all possible variations thereof is encompassed by the invention unless otherwise indicated herein or otherwise clearly contradicted by context.
This application claims priority to U.S. Provisional Patent Application 62/621,325 filed on Jan. 24, 2018 and is herein incorporated by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
1178566 | Wright | Apr 1916 | A |
1333147 | Wright | Mar 1920 | A |
3243949 | Flanigan | Apr 1966 | A |
3272455 | Sternberg et al. | Sep 1966 | A |
3806054 | Johnson | Apr 1974 | A |
3955390 | Geary | May 1976 | A |
4508317 | Conti | Apr 1985 | A |
4580399 | Henrich | Apr 1986 | A |
4597255 | Hunter et al. | Jul 1986 | A |
4735351 | Biswas | Apr 1988 | A |
RE32996 | Takahashi | Jul 1989 | E |
4848694 | Julian | Jul 1989 | A |
5046674 | Kolschbach et al. | Sep 1991 | A |
5123607 | Jones | Jun 1992 | A |
5323982 | Ligon | Jun 1994 | A |
5415188 | Altshuler | May 1995 | A |
5666704 | Price | Sep 1997 | A |
5803393 | Julian | Sep 1998 | A |
5918353 | Jacumin | Jul 1999 | A |
6726142 | Abba | Apr 2004 | B2 |
6735933 | Abba | May 2004 | B2 |
D500087 | Siegel | Dec 2004 | S |
7065948 | Kranich | Jun 2006 | B2 |
7188642 | James et al. | Mar 2007 | B2 |
7328568 | Rahn | Feb 2008 | B2 |
7690179 | Johnson | Apr 2010 | B2 |
7754971 | Bedingfield et al. | Jul 2010 | B2 |
7799997 | Bedingfield et al. | Sep 2010 | B2 |
9303355 | Willson | Apr 2016 | B2 |
9540749 | Bedingfield | Jan 2017 | B2 |
10144610 | Himmelsbach et al. | Dec 2018 | B2 |
20030121244 | Abba | Jul 2003 | A1 |
20030122028 | Abba | Jul 2003 | A1 |
20040129752 | Kranich | Jul 2004 | A1 |
20120110955 | Rekieta et al. | May 2012 | A1 |
20150203324 | Meachum | Jul 2015 | A1 |
20160257523 | Johnson | Sep 2016 | A1 |
Number | Date | Country |
---|---|---|
849 868 | Sep 1952 | DE |
1 422 731 | Jun 2004 | EP |
682 383 | Nov 1952 | GB |
2 143 870 | Feb 1985 | GB |
Entry |
---|
Patent Cooperation Treaty PCT International Search Report, dated Apr. 2, 2019. International Application No. PCT/US2019/013948. International Filing Date: Jan. 17, 2019. |
Number | Date | Country | |
---|---|---|---|
20190225455 A1 | Jul 2019 | US |
Number | Date | Country | |
---|---|---|---|
62621325 | Jan 2018 | US |