This is a 371 of International Application No. PCT/JP2006/306473, with an international filing date of Mar. 29, 2006 (WO 2006/106734 A1, published Oct. 12, 2006), which is based on Japanese Patent Application No. 2005-098138 filed Mar. 30, 2005.
This disclosure relates to a windmill, and specifically, to a connection structure between a hub of a windmill shaft and a blade root part.
A plurality of blades, usually, about three blades, are provided to a windmill, and the mot parts thereof are fixed and connected to a hub of a windmill shaft and the blades are rotated along with the rotation of the windmill shaft. In particular, in a small-sized windmill, a method for fixing blade root parts to a hub by fastening due to through bolts is simplest and well employed. Recently; in order to lighten in weight high-strength and high-rigidity blades, the blade body portions have been formed by employing a fiber reinforced plastic (hereinafter, also referred to as merely “FRP”), in particular, a carbon fiber reinforced plastic (hereinafter, also referred to as merely “CFRP”) (for example, JP-A-2000-120524). Even in such an FRP blade, a blade fixing method due to the fastening using through bolts as described above is employed usually.
In the fixing method having bolt holes on the blade body and directly fastening the blade body using the bolts, however, a crack starting from the bolt hole generated with, a stress concentration may be generated on the blade by the vibration or the centrifugal force generated by the rotation of the windmill, regardless of the bolt fastening force, and a deterioration of an internal material may occur ascribed to penetration of water into the blade.
Further, in a case where bolt holes are provided on the blade body, it may be necessary to specially insert, a solid member into the fastening portion in order to maintain the form and the strength of the bolt hole portion, and in such a case, the weight of the blade may inevitably increase, and the above-described lightening advantage in weight may be damaged. Moreover, the increase in weight of the blade causes an increase of the moment of inertia of the blade and an increase of the kinetic energy of the blade itself and consequently, causes a cost up of other portions due to improvement of a braking performance, increase of motor capacity and weight, reinforcement of a supporting arm, etc. In addition, the increase of the kinetic energy of the blade may increase a damage to the surroundings if the blade would be broken and scattered.
Furthermore, because the fastening using bolls requires an installation accuracy, for example, in a case of a small-sized windmill which is frequently built by an individual at a high, place of his own house and the like or at a hut in a mountain area and the like, the fastening is likely to cause a vibration.
It could therefore be advantageous to provide a windmill having a connection structure between a blade and a hub basically without requiring a bolt fastening structure, thereby achieving lightening in weight of the blade and easily ensuring the strength, rigidity and installation accuracy of this connection portion.
We provide a windmill including connecting a blade root part to a hub in a radial direction of a windmill shaft by an undercut fitting structure. This undercut fitting structure means a structure, for example, wherein a blade root part has a form in which its width is once decreased as approached to a windmill shaft in the radial direction of the windmill shaft and thereafter the width is increased, and on the other hand, a notch portion or a space portion capable of fitting the blade root part is formed on the hub side, and by this fitting, the structure can engage the width increased portion formed on the blade root part against the radially outward direction of the windmill shaft, namely, can perform an undercut function for preventing the blade root part from coming off in the radially outward direction of the windmill shaft.
It is preferred that, with respect to sections in a direction perpendicular to the radial direction of the windmill shaft in the blade root part forming the undercut fitting structure, a section having a sectional area in a range of 1.1 to 2.0 times a minimum sectional area is disposed at a position closer to the windmill shaft than a section having the minimum sectional area. Further, it is preferred that a gap between the hub and the blade root part in the undercut fitting structure is in a range of 0 to 0.5 mm.
Further, it is preferred that a portion of the undercut fitting structure is fixed to a positioning surface of the hub in an axial direction of the windmill shaft by a pressing means. Namely, the undercut fitting structure portion is structured so as to be fixed at a predetermined position in the axial direction of the windmill shaft by the contact between the positioning surface of the hub and the pressing means, and fixed in the radial direction of the windmill shaft by the undercut fitting structure. In both directions, the blade root part is fixed without, requiring fastening by bolts. It is preferred that at least one of surfaces for fixing of the positioning surface and the pressing means is formed as a surface perpendicular to the axial direction of the windmill shaft.
In such a structure, it is preferred that the undercut fitting structure is formed on each of surfaces for fixing of the positioning surface and the pressing means. Further, it is also preferred that the hub and the blade root part come into contact with each other at a flat surface or a surface having a radius of curvature within a range of 5 to 100 mm in a portion of the undercut fitting structure forming a part of the positioning surface of the hub.
A structure can also be employed wherein a plurality of blade root parts are connected to a single hub. It is preferred that a plurality of blade root parts are connected to the huh so as to be disposed equally spaced in angle in a circumferential direction around a rotational axis of the windmill shaft.
In the above-described structure having the pressing means, it is possible to easily fix all the blades simultaneously with only one pressing means, by a structure wherein a single fixing means simultaneously fixes undercut fitting structure portions of a plurality of blades, in such a structure, the easiness and accuracy of installation can be easily ensured.
Further, it is preferred that a blade body part forming a part of the blade root part is formed using a fiber reinforced plastic, from the viewpoint of lightening in weight. In particular, it is preferred that the fiber reinforced plastic comprises a carbon fiber reinforced plastic. In this case, it is preferred that the apparent density of the blade body part is in a range of 0.2 to 1.0 g/cm3.
In the ease where the blade body part is formed using a fiber reinforced plastic, a structure can be employed wherein the portion of the undercut fitting structure formed on the blade root part is covered with a metal frame material. In particular, as described above, in the case where the portion of the undercut fitting structure is fixed to the surface for fixing of the hub in the axial direction of the windmill shaft by the pressing means, because this surface for fixing becomes a contact surface and higher surface strength and accuracy are required, such a structure covered with a metal frame material is preferred. As the metal frame material, also in consideration of lightening in weight, an aluminum frame material (including an aluminum alloy frame material) is preferable. These undercut fitting structure portion of the blade body part and the metal frame material, for example, may be bonded by an adhesive. The thickness of the layer of the adhesive between the blade body part and the metal frame material forming the portion of the undercut fitting structure is preferably in a range of 0.05 to 0.5 mm.
Further, in the above-described structure having the metal frame material, it is preferred that the blade body part and the metal frame material forming the portion of the undercut fitting structure are connected to each other by the undercut fitting structure. The metal frame material may be divided into a plurality of parts. The metal frame material may be divided into a plurality of parts at positions except the portion of the undercut fitting structure. A structure may also be employed, wherein the undercut fitting structure is formed via a contact between the hub and the metal frame material.
Further, a structure can be employed wherein a strip having a flexibility for restricting a displacement of a blade relative to the hub when the fixing of the blade to the hub is released is provided at a connecting portion of the blade root part to the hub.
Namely, in addition to the connection due to the undercut fitting structure according to the present invention, the above-described structure is formed for restricting a displacement of a blade relative to the hub by the strip having a flexibility when the fixing of the blade to the hub is released. Basically, this structure is employed so that, during the time of a normal operation (during the time of a normal rotation of the blade), a force for restricting the blade substantially is not applied to the strip (a force is not applied to the strip), and when the fixing of the blade is released by a fatigue failure of the connecting portion and the like, the blade is restricted by the strip so as not to be left from the hub at a certain distance or more, and the blade is prevented from being scattered. Therefore, fatigue does not occur in the strip itself, and when the strip is functioned to prevent the blade from being scattered, the strip itself can surely exhibit an expected strength, etc., thereby surely achieving the prevention of blade scattering.
The tensile strength of the above-described strip is preferably in a range of 1.5 to 5.0 GPa, and the tensile breaking strain of the strip is preferably in a range of 3 to 15%. By such a structure, the scattering of the blade can be properly prevented.
further, it is preferred that a tensile stress generated in the strip is 1% or less of a tensile strength of the strip when the windmill operates in a rated range of use. Namely, it is preferred that, as described above, during the time of a normal rotation, the blade is maintained to be connected to the blade at a condition where the strip is deflected so that a tensile load almost is not applied to the strip or at a condition where a surplus is given to the strip utilizing the flexibility of the strip, and only when it is required to prevent the blade from being scattered, the tensile load is applied to the strip for restricting the blade.
Various structures can be employed as the connection structure of the strip to the blade root part. For example, a structure can be employed wherein a part of the strip is placed in a part of the blade. Further, a structure can also be employed wherein a part, of the strip is tied to a part, of the blade. Together with these structures, an adhesive may be used for bonding.
The above-described strip is not particularly limited, as long as a tensile strength enough to prevent the scattering of the blade and a flexibility enough to achieve a connection structure to the blade, in which a force almost does not act on the strip at the time of a normal operation, are given to the strip. A desirable material for the strip comprises, for example, at least one kind of glass fibers, aramide fibers and a steel wire material.
Further, with respect to the connection structure between the strip and the blade root part, either a structure wherein a single strip restricts one blade, or a structure wherein a plurality of blades are restricted in displacement by using substantially a single strip, can be employed.
Although the type of the windmill is not particularly limited, our windmills are suitable, in particular, to a horizontal shaft type windmill whose windmill shaft extends in a horizontal direction.
In the above-described windmill, the blade acted with a centrifugal force in the radial direction of the windmill shaft by its rotation is connected to the hub by the undercut fitting structure at the root part thereof. In the axial direction of the windmill shaft, by fixing the portion of the undercut fitting structure to the surface for positioning of the hub in the axial direction of the windmill shaft by the pressing means, a desired fixing at a predetermined position can be easily achieved. Therefore, the blade root part basically does not at all require a bolt fastening structure as in the conventional structures, and bolt holes are also unnecessary.
Thus, the connection and the fixing between the blade and the hub can be achieved without using the bolt fastening structure directly to the blade body, the problems of occurrence of fatigue and cracks on the blade accompanying with the bolt fastening can be solved, facilitation and improvement of accuracy for installation can be achieved, and further, by making the processing of bolt holes unnecessary and simplifying the forms of the blade and hub portions, the manufacture may be facilitated and the cost, therefor may be reduced.
Further, by making, the blade body part with an FRP, while the weight of the blade can be reduced, the strength, the rigidity and the accuracy in installation of the connecting portion to the hub can be easily ensured by the undercut fitting structure. Further, because bolt holes of the FRP blade body part can be made unnecessary, penetration of water into the blade can be easily prevented, and the weather resistance and the like may be improved. Furthermore, because the form is simple, the molding of the blade can be facilitated.
In particular, in a case of an FRP blade, since a structure for making the inside of the blade body hollow or for interposing a very light core material therein can be employed, it becomes possible to further accelerate the lightening in weight of the blade.
The portion 5 of this undercut lilting structure comprises an undercut fitting structure part 6 formed on the blade root pan, and an fitting hole portion 7 formed on the side of hub 3 and fitted with the undercut fitting structure part 6 formed on the side of blade 4, thereby engaging the undercut fitting structure part 6 against the radially outward direction of windmill shall 2. In more detail as shown also in
In that structure, undercut fitting structure part 6 formed on the blade root part is covered with a metal, in particular, an aluminum frame material 8.
The structure of the section along A-A line in
The structure of the section along B-B line in
In the structure shown in
In the structure shown in
Further, as the structures of the sections along A-A line and C-C line in
Thus, various structures can be employed as the portion of the undercut fitting structure and the pressing structure by the pressing means. In any structure, the bolt fastening structure employed in the conventional technology is not necessary for the connection between the blade root part and the hub, the problems of occurrence of fatigue and cracks on the blade accompanying with the bolt fastening can be solved, and facilitation and improvement of accuracy for installation can be achieved. By making the processing of bolt holes unnecessary, the manufacture may be facilitated and the cost therefor may be reduced by simplifying the forms of the blade and hub portions, and penetration of water into the blade can be easily prevented and the weather resistance and the like may be improved.
Further, by making the blade body part with an FRP, particularly with a CFRP, while the weight of the blade can be reduced, the strength, the rigidity and the accuracy in installation of the connecting portion to the hub can be easily ensured.
In addition to the above-described undercut fitting structure, a structure can be added wherein a strip having a flexibility for restricting a displacement of a blade relative to the hub when the fixing of the blade to the hub is released is provided at a connecting portion of the blade root part to the hub.
For example, as shown in
As aforementioned, the tensile strength of the above-described strip 31 or 32 is preferably in a range of 1.5 to 5.0 GPa, and the tensile breaking strain is preferably in a range of 3 to 15%. Further, it is preferred that a tensile stress generated in the above-described strip 31 or 32 is 1% or less of a tensile strength of the strip when the windmill operates in a rated range of use. Furthermore, a desirable material for the above-described strip 31 or 32 comprises, for example, at least one kind of glass fibers, aramide fibers and a steel wire material.
Our structures can be applied to any windmill, and in particular, our structures are suitable for a small-sized windmill, a windmill having FRP blades and a horizontal shaft type windmill.
Number | Date | Country | Kind |
---|---|---|---|
2005-098138 | Mar 2005 | JP | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/JP2006/306473 | 3/29/2006 | WO | 00 | 9/28/2007 |