This application is based on and claims priority to Chinese Patent Application Serial No. 201920188070.2 and No. 201920188057.7, filed on Feb. 3, 2019, the entire contents of which are incorporated herein by reference.
The present disclosure relates to a field of refrigeration, and particularly, to a window air conditioner.
An existing window air conditioner is mounted to a window of a room with the window being located above the window air conditioner. During the operation of the window air conditioner, noise generated by an outdoor compressor will be transmitted into the room, degrading the use comfort. In order to meet refrigeration requirements, the existing window air conditioner is designed with a large size, which occupies a large space and lowers a space utilization rate.
The present disclosure aims to solve one of the technical problems existing in the related art to at least some extent. To this end, the present disclosure provides a window air conditioner, in which a space occupied when an indoor heat exchanger cooperates with an indoor fan wheel can be reduced, and hence the window air conditioner has a reduced volume and occupies a smaller space.
According to an embodiment of the present disclosure, the window air conditioner is supported in a window opening of a wall, and a movable window is provided in the window opening. The window air conditioner includes a casing having a receiving groove formed at an outer peripheral wall of the casing, and divided into an indoor portion and an outdoor portion by the receiving groove, at least a part of the window being able to extend into the receiving groove, and the indoor portion including an air inlet and an air outlet; an indoor fan wheel arranged in the indoor portion; an indoor heat exchanger arranged in the indoor portion and including a first heat exchange portion and a second heat exchange portion, the first heat exchange portion extending vertically, and the second heat exchange portion having an upper end connected to a lower end of the first heat exchange portion and a lower end obliquely extending towards the indoor fan wheel; and a filter screen located upstream of the indoor heat exchanger in an air-flowing direction.
For the window air conditioner according to the embodiment of the present disclosure, the casing is provided with the receiving groove, and at least a part of the window can extend into the receiving groove, such that the window can position the window air conditioner to some extent for fixation, and the window air conditioner can be prevented from falling off. The window extending into the receiving groove can provide a sound insulation effect, a heat insulation effect, and a sealing effect to some extent, thereby improving the use comfort. A user can choose whether to provide a sealing assembly to seal a space between the window and the window opening according to actual needs. Even if the sealing assembly is provided, the sealing assembly of the window air conditioner according to the embodiment of the present disclosure needs fewer materials compared with a sealing assembly in the related art, thereby saving the cost.
In the meantime, since the indoor heat exchanger includes the first heat exchange portion extending vertically and the second heat exchange portion extending obliquely, not only a heat exchange area of the indoor heat exchanger can be enlarged and a heat exchange effect of the indoor heat exchanger can be improved, but also a space occupied by the indoor heat exchanger and the indoor fan wheel when they cooperate with each other can be reduced, thereby reducing a size of the window air conditioner and a space occupied by the window air conditioner.
In some embodiments of the present disclosure, an angle A between the second heat exchange portion and a horizontal plane is in a range between 35° and 55°.
In some embodiments of the present disclosure, the first heat exchange portion vertically extends by a length H1, the second heat exchange portion obliquely extends by a length H2, and a ratio of H1/H2 is in a range between 0.2 and 0.4.
In some embodiments of the present disclosure, the filter screen and the indoor heat exchanger are spaced apart, the filter screen includes a first filtering portion and a second filtering portion, the first filtering portion extends vertically, and the second filtering portion has an upper end connected to a lower end of the first filtering portion and a lower end obliquely extending towards the indoor fan wheel.
In some embodiments of the present disclosure, a distance between the first filtering portion and the first heat exchange portion is d1, a distance between the second filtering portion and the second heat exchange portion is d2, and a ratio of d1/d2 ranges from 0.9 to 1.2.
In some embodiments of the present disclosure, the indoor portion includes the air outlet in a top thereof, a plane where the air outlet is located is configured as an air outlet plane, and the air outlet plane obliquely extends rearwards in a direction from bottom to top.
In some embodiments of the present disclosure, an angle B between the air outlet plane and a vertical plane is in a range between 50° and 66°.
In some embodiments of the present disclosure, the second heat exchange portion has more rows of heat exchange tubes than the first heat exchange portion.
In some embodiments of the present disclosure, the casing includes: a chassis; a rear case fixed on the chassis and configured to receive an outer heat exchanger; and a front case fixed on the chassis and spaced apart from the rear case in a front-rear direction to define the receiving groove.
In some embodiments of the present disclosure, the indoor heat exchanger has a side plate assembly; the window air conditioner further includes a water receiving pan, the water receiving pan is provided with a rib assembly configured to support the side plate assembly, and the water receiving pan is provided below a heat exchanger assembly.
In some embodiments of the present disclosure, the rib assembly includes a first rib and a second rib spaced apart from each other, the side plate assembly includes a first side plate and a second side plate, the first side plate is arranged at a first end of the heat exchanger assembly, and the heat exchanger assembly has a heat exchange tube running through the first side plate, the first rib is used to support the first side plate, and the second rib is used to support the second side plate.
In some embodiments of the present disclosure, the first side plate has a first flange, the first flange abuts against the first rib and is connected to the first rib by means of a screw, the second side plate has a second flange, and the second flange abuts against the second rib and is connected to the second rib by means of a screw.
In some embodiments of the present disclosure, the first flange extends towards the second side plate, and the second flange extends towards the first side plate.
In some embodiments of the present disclosure, the first flange and the second flange are each provided with a lug, and the lug has a screw hole.
In some embodiments of the present disclosure, the first rib and the second rib each have an oblique support surface to support a surface of a part of the second heat exchange portion facing the water receiving pan.
In some embodiments of the present disclosure, the first rib and the second rib each have a water hole.
In some embodiments of the present disclosure, the water receiving pan is provided with an auxiliary water receiving portion to receive condensation water from a refrigerant tube, and the auxiliary water receiving portion is in communication with the water hole.
In some embodiments of the present disclosure, the first rib is provided with the water hole, and a drain channel is located at a side of the first rib away from the second rib.
In some embodiments of the present disclosure, the water receiving pan is provided with a first fitting portion, and the filter screen has a second fitting portion cooperating with the first fitting portion.
In some embodiments of the present disclosure, one of the first fitting portion and the second fitting portion is configured as an insertion bar, and the other one thereof is configured as a sliding slot fitted with the insertion bar.
Additional aspects and advantages of embodiments of present disclosure will be given in part in the following descriptions, become apparent in part from the following descriptions, or be learned from the practice of the embodiments of the present disclosure.
These and/or other aspects and advantages of embodiments of the present disclosure will become apparent and more readily appreciated from the following descriptions made with reference the accompanying drawings, in which:
Embodiments of the present disclosure will be described in detail and examples of the embodiments will be illustrated in the accompanying drawings, where same or similar reference numerals are used to indicate same or similar members or members with same or similar functions. The embodiments described herein with reference to the drawings are explanatory, which aim to illustrate the present disclosure, but shall not be construed to limit the present disclosure.
In the specification, it is to be understood that terms such as “central,” “longitudinal,” “lateral,” “length,” “width,” “thickness,” “upper,” “lower,” “front,” “rear,” “left,” “right,” “vertical,” “horizontal,” “top,” “bottom,” “inner,” “outer,” “axial,” “radial,” and “circumferential” should be construed to refer to the orientation as then described or as shown in the drawings under discussion. These relative terms are for convenience of description and do not indicate or imply that the corresponding device or component has to oriented in a particular direction, or is constructed or operated in a particular orientation, and hence shall not be construed to limit the present disclosure. Furthermore, the feature defined with “first” and “second” may explicitly or impliedly comprise one or more of such feature. In the description of the present disclosure, the term “plurality of” means two or more than two, unless specified otherwise.
In the description of the present disclosure, it should be understood that, unless specified or limited otherwise, the terms “mounted,” “connected,” and “coupled” and variations thereof are used broadly and encompass such as mechanical or electrical mountings, connections and couplings, also can be inner mountings, connections and couplings of two components, and further can be direct and indirect mountings, connections, and couplings, which can be understood by those skilled in the art according to the detail embodiment of the present disclosure.
A window air conditioner 1 according to embodiments of the present disclosure will be described with reference to the drawings. The window air conditioner 1 is supported at a window opening 5 in a wall 4, and the window opening 5 is provided with a movable window 3.
As shown in
The indoor portion 11 is provided with an air inlet 13 and an air outlet 14. The indoor fan wheel 6 is arranged in the indoor portion 11. Specifically, during rotation of the indoor fan wheel, indoor air enters the indoor portion 11 through the air inlet 13 and is output to an indoor space from the air outlet 14 after heat exchange. Optionally, the indoor fan wheel 6 may be a cross-flow fan wheel, such that air can be comparatively uniformly blown out from the air outlet 14 over a long distance.
The indoor heat exchanger 500 is arranged in the indoor portion 11. The indoor heat exchanger 500 includes a first heat exchange portion 560 and a second heat exchange portion 570. The first heat exchange portion 560 extends vertically. The second heat exchange portion 570 has an upper end connected to a lower end of the first heat exchange portion 560, and a lower end obliquely extending towards the indoor fan wheel 6. That is, the second heat exchange portion 570 is located below the first heat exchange portion 560, the first heat exchange portion 560 and the second heat exchange portion 570 define an angle therebetween, and the indoor fan wheel 6 is located in an angular area defined by the first heat exchange portion 560 and the second heat exchange portion 570. In a specific example of the present disclosure, the indoor heat exchanger 500 is located at an air introduction side of the indoor fan wheel 6, thereby ensuring a heat exchange effect. It should be understood that, the first heat exchange portion 560 and the second heat exchange portion 570 can be formed by bending one heat exchanger, or the first heat exchange portion 560 and the second heat exchange portion 570 can be two independent heat exchangers.
In an air flowing direction, the filter screen 600 is located upstream of the indoor heat exchanger 500. That is, the air entering the indoor portion 11 is first filtered by the filter screen 600 and then flows to the indoor heat exchanger 500 for heat exchange. Since the filter screen 600 filters the air, dust and the like can be prevented from being directly attached to the indoor heat exchanger 500 and from affecting the heat exchange effect of the indoor heat exchanger 500, while cleanliness of the air output to the indoor space through the air outlet 14 can be improved.
It needs to be noted that, some existing window air conditioners are directly put in the window opening 5, so a lot of sealing assemblies need to be arranged between the window air conditioner and the window opening 5, and between the window 3 and a window sill for sealing, which makes it difficult to mount the window air conditioner and increases the sealing cost. Some existing window air conditioners have a mounting space with an downward opening, and the wall 4 extends into the mounting space to support the window air conditioner, in which case a top board of the window air conditioner bears a relatively large force, and a safety risk exists that the window air conditioner may fall off if the top board breaks.
For the window air conditioner 1 according to the embodiment of the present disclosure, the casing 2 is provided with the receiving groove 21, and at least a part of the window 3 can extend into the receiving groove 21, such that the window 3 can position the window air conditioner 1 to some extent for fixation, and the window air conditioner 1 can be prevented from falling off. The window 3 extending into the receiving groove 21 can provide a sound insulation effect, a heat insulation effect and a sealing effect to some extent, thereby improving the use comfort. A user can choose whether to provide a sealing assembly to seal a space between the window 3 and the window opening 5 according to actual needs. Even if the sealing assembly is provided, the sealing assembly of the window air conditioner 1 according to the embodiment of the present disclosure needs fewer materials compared with a sealing assembly in the related art, thereby saving the cost.
In the meantime, the indoor heat exchanger 500 includes the first heat exchange portion 560 extending vertically and the second heat exchange portion 570 extending obliquely, which not only increases a heat exchange area and improves the heat exchange effect of the indoor heat exchanger 500, but also reduces a space occupied by the indoor heat exchanger 500 and the indoor fan wheel 6 when they cooperate with each other, thereby reducing a volume of the window air conditioner 1 and a space occupied by the window air conditioner 1.
In some embodiments of the present disclosure, as shown in
As shown in
In some embodiments of the present disclosure, as shown in
As shown in
In some embodiments of the present disclosure, the casing 2 is provided with a sliding slot therein, and the filter screen 600 cooperates with the sliding slot in a push-pull manner, such that the filter screen 600 can be conveniently detached for cleaning, and the filter screen 600 is also easy to mount.
As shown in
Optionally, as shown in
In some embodiments of the present disclosure, the second heat exchange portion 570 has more rows of heat exchange tubes than the first heat exchange portion 560, which can effectively utilize an internal space in the indoor portion 11, and improves a heat exchange effect of the second heat exchange portion 570 and a refrigeration effect of the window air conditioner 1. In some examples of the present disclosure, as shown in
As shown in
More specifically, as shown in
Optionally, as shown in
Furthermore, the front case 26 is a sheet metal piece or a plastic piece, the rear case 23 is a sheet metal piece, and the intermediate partition board 18 is a plastic piece.
As shown in
Specifically, the indoor heat exchanger 500 has a side plate assembly, and the water receiving pan 400 is provided with a rib assembly to support the side plate assembly. The water receiving pan 400 is arranged below the indoor heat exchanger 500. It needs to be noted that, in the window air conditioner 1 according to embodiments of the present disclosure, the indoor heat exchanger 500 is provided with the side plate assembly, so as to be connected and assembled with the water receiving pan 400, and the water receiving pan 400 is prevented from directly contacting a heat exchange body of the indoor heat exchanger 500, such that fins of the indoor heat exchanger 500 can be prevented from being pressed by the water receiving pan 400, the structural integrity of the fines can be enhanced, and the heat exchange effect of the indoor heat exchanger 500 can be improved.
As shown in
In addition, after the indoor heat exchanger 500 and the water receiving pan 400 are assembled, the assembling stability of the indoor heat exchanger 500 and the water receiving pan 400 can be improved.
Furthermore, as shown in
As shown in
As shown in
In order to improve drainage performance of the water receiving pan 400, in some embodiments, as shown in
The window air conditioner 1 according to embodiments of the present disclosure will be described with reference to the drawings.
As shown in
The water receiving pan 400 is provided with a first mounting portion 420 and a second mounting portion 430 spaced apart from each other. The indoor heat exchanger 500 is provided with a third mounting portion 510 and a fourth mounting portion 520. The first mounting portion 420 is connected to the third mounting portion 510, and the second mounting portion 430 is connected to the fourth mounting portion 520.
In the window air conditioner 1 according to embodiments of the present disclosure, with the first mounting portion 420, the second mounting portion 430, the third mounting portion 510 and the fourth mounting portion 520, the water receiving pan 400 can be conveniently connected to the indoor heat exchanger 500, which improves the efficiency of mounting and dismounting the water receiving pan 400 and the indoor heat exchanger 500, and can also ensure reliability and stability of connection between the water receiving pan 400 and the indoor heat exchanger 500, thereby further improving the structural strength, stability and operation performance of the window air conditioner 1.
In addition, since the water receiving pan 400 and the indoor heat exchanger 500 are connected by means of the first mounting portion 420 and the third mounting portion 510 and by means of the second mounting portion 430 and the fourth mounting portion 520, stress between the water receiving pan 400 and the indoor heat exchanger 500 is relatively uniform, which avoids excessive local stress at the connection between the water receiving pan 400 and the indoor heat exchanger 500 and therefore prevents the water receiving pan 400 and the indoor heat exchanger 500 from being damaged, thereby prolonging the service life of the water receiving pan 400 and the indoor heat exchanger 500. Hence, the structural stability and operation reliability of the window air conditioner 1 is further improved.
Therefore, the window air conditioner 1 according to embodiments of the present disclosure is convenient to assemble and is reliable in structure and has other advantages.
The window air conditioner 1 according to a specific embodiment of the present disclosure is described with reference to the drawings.
In some specific embodiments of the present disclosure, as shown in
Specifically, as shown in
More specifically, as shown in
Optionally, the first side plate 540 is a sheet metal piece, and the second side plate 550 is a plastic piece. In this case, the indoor heat exchanger 500 can be assembled and formed conveniently, the cooperation between the indoor heat exchanger 500 and the water receiving pan 400 can be facilitated, the assembly process of the indoor heat exchanger 500 can be simplified, and the assembly efficiency of the indoor heat exchanger 500 can be improved.
Specifically, the first mounting portion 420 is connected to the third mounting portion 510 by snapping or by means of a screw. The second mounting portion 430 is connected to the fourth mounting portion 520 by snapping or by means of a screw. In this case, the first mounting portion 420 can be fixedly mounted to the third mounting portion 510, and the second mounting portion 430 can be fixedly mounted to the fourth mounting portion 520, thereby ensuring the reliable connection between the water receiving pan 400 and the indoor heat exchanger 500. In the meantime, it is convenient to mount and dismount the water receiving pan 400 and the indoor heat exchanger 500, which improves the production efficiency of the window air conditioner 1 and reduces the maintenance cost of the window air conditioner 1.
Optionally, as shown in
Furthermore, one of the first fitting portion 440 and the second fitting portion 610 is an insertion bar, and the other one thereof is a sliding slot fitted with the insertion bar. The first fitting portion 440 and the second fitting portion 610 can be used for positioning and guiding the filter screen 600 during installation, thereby improving the accuracy and reliability of installation of the filter screen 600, and facilitating the installation of the filter screen 600 to the water receiving pan 400.
Specifically, as shown in
More specifically, the communication member 410 is connected to the second mounting portion 430. Hence, it is convenient to mount and arrange the communication member 410, and the drainage performance of the communication member 410 is improved.
Furthermore, as shown in
Optionally, the drain channel 411 has an inclined inner bottom wall, which facilitates the flowing of the condensation water in the drain channel 411, thereby improving the drainage effect of the drain channel 411.
Furthermore, in the direction from the indoor side to the outdoor side, the inner bottom wall of the drain channel 411 gradually inclines towards the outdoor side. In this case, the condensation water in the water receiving pan 400 can be easily and smoothly drained by gravity, thereby improving drainage efficiency of the water receiving pan 400.
Specifically, the water receiving pan 400 includes the first rib and the second rib. The first rib is arranged at one side of the water receiving pan 400, and the first rib is configured as the first mounting portion 420. The second rib is arranged at the other side of the water receiving pan 400, and the second rib is configured as the second mounting portion 430. In this case, the first mounting portion 420 and the second mounting portion 430 can be machined and arranged conveniently, and the cooperation between the first mounting portion 420 and the third mounting portion 510 and the cooperation between the second mounting portion 430 and the fourth mounting portion 520 can be facilitated, thereby facilitating connection between the water receiving pan 400 and the indoor heat exchanger 500.
Optionally, the window air conditioner 1 further includes the chassis 100, an intermediate partition plate 300, the outdoor portion, and the indoor portion. The intermediate partition plate 300 is connected to the chassis 100, and the water receiving pan 400 is arranged in the indoor portion. The indoor portion, the intermediate partition plate 300, and the outdoor portion define the receiving groove 21 for receiving the window. The indoor heat exchanger 500 is arranged in the indoor portion, and the water receiving pan 400 is arranged below the indoor heat exchanger 500 (an up-down direction as indicated by arrow A in
In some embodiments of the present disclosure, as shown in
Optionally, as shown in
Specifically, as shown in
Optionally, as shown in
Further, the front case 24 is a sheet metal piece or a plastic piece, the rear case 23 is a sheet metal piece, and the intermediate partition plate 300 is a plastic piece.
According to some embodiments of the present disclosure, the window air conditioner 1 further includes a soundproof member 200, and the soundproof member 200 is arranged at the chassis 100 to divide the chassis 100 into an indoor side and an outdoor side. The soundproof member 200 is connected to the chassis 100 by means of the intermediate partition plate 300 and is sandwiched between the chassis 100 and the intermediate partition plate 300. In this case, the soundproof member 200 can be used to isolate airflow between the indoor side and the outdoor side, and the installation part of the window air conditioner 1 can be sealed more conveniently. That is, it is convenient to seal a space between the window and a mounting opening, thereby improving the sealing effect at the installation position of the window air conditioner 1, and enhancing the heat insulation and sound insulation between the indoor side and the outdoor side, so as to prevent outdoor temperature and outdoor noise from affecting the indoor environment, improve user experience, and improve the functionality and applicability of the window air conditioner 1.
Furthermore, since the soundproof member 200 is sandwiched between the chassis 100 and the intermediate partition plate 300, it is convenient to position, install and arrange the soundproof member 200, thereby improving the arrangement reliability and accuracy of the soundproof member 200, improving the sealing effect and sound insulation effect of the soundproof member 200, and improving the use comfort.
Specifically, as shown in
Furthermore, the pipe runs through the first channel 210, and the second channel 220 provides the path for drainage, such that the window air conditioner 1 has its pipe channel and its drain channel located at two sides of the window air conditioner 1 respectively, which prevents the pipe channel and the drain channel from affecting each other, and improves operation reliability and stability of the window air conditioner 1.
More specifically, as shown in
Specifically, the first channel 210 is provided with a sponge member or an enclosure member. In this case, the sponge member or the enclosure member can be used to fill gaps in the first channel 210 after installation of the pipes, thereby further improving the sealing effect in the installation position of the window air conditioner 1.
Optionally, the soundproof member 200 is a foam member. In this case, it is convenient to machine and produce the soundproof member 200, to increase the production efficiency of the soundproof member 200, and to improve a sealing effect of the soundproof member 200, such that the soundproof member 200 can be used for noise isolation.
Certainly, the soundproof member 200 may be a member made of rubber, silicone, sponge, or the like.
Specifically, the intermediate partition plate 300 is connected to the chassis 100 by a screw, which improves reliability and strength of connection between the intermediate partition plate 300 and the chassis 100.
According to a specific embodiment of the present disclosure, as shown in
Specifically, as shown in
In some embodiments of the present disclosure, the angle A between the second heat exchange portion 570 and the horizontal plane is in the range between 35° and 55°, such that it is possible to avoid influencing the heat exchange effect and occupying more space resulting from the inclination angle of the second heat exchange portion 570 being too large or too small. Preferably, the angle A between the second heat exchange portion 570 and the horizontal plane is 45°
In some embodiments of the present disclosure, the first heat exchange portion 560 vertically extends by the length H1, the second heat exchange portion 570 obliquely extends by the length H2, and the ratio of H1/H2 is in the range between 0.2 and 0.4. Thus, a space in a lower portion of the indoor side can be utilized reasonably. Preferably, the ratio of H1/H2 is 0.3.
More specifically, the second heat exchange portion 570 has more rows of heat exchange tubes 530 than the first heat exchange portion 560, which can effectively utilize the internal space of the indoor portion 11, and improves the heat exchange effect of the second heat exchange portion 570 and the refrigeration effect of the window air conditioner 1.
Optionally, as shown in
Other configurations and operations of the window air conditioner 1 according to embodiments of the present disclosure are known to those skilled in the art and will not described herein.
Reference throughout this specification to “an embodiment,” “some embodiments,” “an exemplary embodiment,” “an example,” “a specific example,” or “some examples,” means that a particular feature, structure, material, or characteristic described in connection with the embodiment or example is included in at least one embodiment or example of the present disclosure. Thus, the illustrative descriptions in connection with the above terms throughout this specification are not necessarily referring to the same embodiment or example of the present disclosure. Furthermore, the particular features, structures, materials, or characteristics may be combined in any suitable manner in one or more embodiments or examples.
Although embodiments of the present disclosure have been shown and described, it would be appreciated by those skilled in the art that changes, modifications, alternatives and variations can be made in the embodiments without departing from the scope of the present disclosure. The scope of the invention is defined by the claims and the like.
Number | Date | Country | Kind |
---|---|---|---|
201920188057.7 | Feb 2019 | CN | national |
201920188070.2 | Feb 2019 | CN | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/CN2019/080050 | 3/28/2019 | WO | 00 |