Automotive vehicle window antennas, including embedded wire or silver print antennas in rear windows and windshields, have been used for many years. More recently, metal coated infrared ray reflective thin films have been used as antennas.
Several antennas have been proposed which use a wire antenna of a quarter or half wavelength that is formed in a vehicle window by a thin film or a conductive coating on or between the layers of the glass window. Such designs may include automotive antennas that have several electrically interconnected coating regions and a transparent coating in the shape of a “T”. Also, antennas that divide the conductive coating into two pieces and have the AM and FM antennas separated to reduce AM noise and improve system performance are known.
Another proposed solution is to form a slot antenna between the metal frame of a window and a conductive transparent film panel that is bonded to the window and has an outer peripheral edge spaced from the inner edge of the window frame to define the slot antenna. Examples utilize at least one edge with a conductive coating overlapping the window frame of the vehicle body to short the coating to ground at high frequencies by coupling so as to improve transmission and reception of radio frequency waves.
From an aesthetic point of view the slot antenna concept is a generally good solution because the antenna is invisible and can be used on any window. Another benefit is a heat load reduction because the slot antenna removes a small area of heated reflective coating compared to other antenna concepts. There are various technical challenges to implementing slot antennas, especially on the windshield of a vehicle. First, there is only a limited area around the window perimeter to put the antenna elements and it may be difficult to design an antenna to meet the performance requirements. Second, slot antennas are difficult to tune to a frequency band because the antenna characteristics depend on the slot dimensions. For example, the perimeter of the window defines the maximum slot length, which defines the lowest frequency application. The lowest frequency applications may not be in the frequency band of interest. Various windshield and back glass window slot antennas can cover the FM frequency band but not the TV band I (47 MHz-68 MHz). Thus, there is a need for an antenna, for example a windshield hidden antenna, with a tunable frequency band for different applications. There is also a need for a vehicle slot antenna with advanced antenna matching and frequency tuning methods that can be used to design an antenna with acceptable performance while retaining all solar benefits of the heat reflective coating and having good aesthetics.
Various embodiments of the present invention are directed to a vehicle window assembly. The vehicle window assembly includes a frame having an inner metal edge and a window pane fixed to the frame. The window pane includes an inner glass ply, an outer glass ply, and an interlayer between the inner glass ply and the outer glass ply. The window pane also includes an electro-conductive coating located on a surface of the outer glass ply, wherein the electro-conductive coating has an outer peripheral edge spaced from the inner metal edge of the frame to define an antenna slot, and wherein the electro-conductive coating includes at least one deleted portion adjacent the antenna slot, wherein the deleted portion is sized to tune the antenna slot to a desired resonant frequency. The vehicle window assembly further includes an antenna feed structure electrically connected to the outer peripheral edge of the electro-conductive coating.
Various embodiments of the present invention are directed to a vehicle window assembly. The window assembly includes a glass ply and an electro-conductive coating located on a surface of the glass ply. The electro-conductive coating has an outer peripheral edge that is adapted to be spaced from an inner metal edge of a vehicle frame so as to define an antenna slot. The electro-conductive coating includes at least one deleted portion adjacent the outer peripheral edge, wherein the deleted portion is sized to tune the antenna slot to a desired resonant frequency.
Those and other details, objects, and advantages of the present invention will become better understood or apparent from the following description and drawings showing embodiments thereof.
Various embodiments of the present invention are described herein by way of example in conjunction with the following figures, wherein:
Embodiments of the present invention are directed to a slot antenna for a vehicle. The slot antenna forms between the metal frame of a window and a conductive transparent film panel that is bonded to the window and has an outer peripheral edge spaced from the inner edge of the window frame to define a slot antenna. The slot length is chosen such as to support fundamental modes, at frequency bands of interest. The annular slot formed between the vehicle frame and the conductive coating edges is the longest slot size and thus defines the fundamental mode with the lowest resonant frequency. The total slot length may be one wavelength for annual slot antenna or one-half wavelength for non annular shaped slot for the fundamental excitation mode.
The slot length can be electrically shorted by overlapping one or more edges of the window coating with the vehicle frame such that the radio frequency signal is shorted to the vehicle frame through coupling. This provides a manner of tuning the slot antenna for different applications of higher frequency bands. Slot antennas formed from different sides of a window have different field distributions and different antenna patterns and hence yield a diversity of reception.
The slot length can be increased by introducing one or more slits on its perimeter by removing the conductive coating. The radio frequency current is forced to detour around the slits and therefore increases the electrical length of the slot. As a result the resonant mode frequency is shifted towards lower frequency bands. The length, width, and number of slits are determined by the window size and the frequency band of interest.
In various embodiments, the slot antenna can either be fed directly or by capacitive coupling. The coupling feed may have the advantage of easier antenna tuning and manufacture. The antenna feeding structure in various embodiments is designed to excite multiple modes of the slot antenna to support applications of different electronic devices at different frequency bands.
The windshield 20 may be a standard laminated vehicle windshield formed of outer glass ply 12 and inner glass ply 14 bonded together by an interposed layer, or interlayer, 18. The interposed layer 18 may be constructed of, for example, a standard polyvinylbutyral or any type of plastic material. The outer glass ply 14 has an outer surface 140 (conventionally referred to as the number 1 surface) on the outside of the vehicle and an inner surface 142 (conventionally referred to as the number 2 surface). The inner glass ply 12 has an outer surface 122 (conventionally referred to as the number 3 surface) on the inside of the vehicle and an inner surface 120 (conventionally referred to as the number 4 surface) internal to the windshield 20. The interlayer 18 is between the surfaces 142 and 122.
As shown in
The windshield 20 further includes an electro-conductive element, or conductive coating, 16 which occupies the daylight opening of the transparency. The coating 16 may be constructed of transparent electro-conductive coatings applied on the surface 142 of the outer glass ply 14 (as shown in
The conductive coating 16 has a peripheral edge 17 which is spaced from the vehicle body window edge 11 and defines an annular antenna slot 13 between the edge 11 and the peripheral edge 17. In one embodiment, the slot width is sufficiently large enough that the capacitive effects across it at the frequency of operation are negligible such that the signal is not shorted out. In one embodiment, the slot width is greater than 10 mm. In one embodiment, the length of the slot 13 is an integer multiple of wavelength for an annular slot or an integer multiple of one-half of the wavelength for a non-annular slot with respect to resonant frequency of the desired application. For a windshield of a typical vehicle, the slot length is such as to resonant at the VHF band and can be used for TV VHF band and FM applications.
It may be difficult to conductively connect the center conductor 44 of the coaxial cable 50 to the coating 16 because the coating 16 is thin. Also, the antenna matching and tuning may be difficult because the antenna elements may be laminated inside the glass plies 12 and 14 without easy access. The higher order modes of the slot 13 present a significant reactive component and, in one embodiment, only the two lower modes in the VHF band can be excited with mode impedance of approximately 50Ω using the antenna feeding method described herein.
The capacitive coupling may preferably, in various embodiments, be an antenna feeding arrangement because in various embodiments it provides a relatively easier manufacturing process and gives an opportunity for antenna tuning and impedance matching. The antenna feeding arrangement presents an impedance transfer into the slot antenna modes with its own impedances, which is a function of feed position, frequency and mode. Only the modes that are matched to the transmission line characteristic impedance, for example 50Ω, can be excited. Comparing to the direct feed as shown in
Referring again to
The resonant frequencies of the antenna fundamental modes are determined predominantly by the slot length, which can be designed such that the mode resonant frequencies are aligned with the operation frequencies of vehicle electronics systems. The slot length can be shorted by overlapping one or more side edges of the coating 16 with the vehicle frame 30 such that the radio frequency signal is shorted to the frame 30 through capacitive coupling. Such an arrangement allows for tuning the slot antenna 13 for different applications of higher frequency bands. The longest slot length is the total length of the windshield perimeter, i.e., the length of the slot 13 as shown in
An embodiment similar to that illustrated in
Embodiments of the present invention are directed to a transparent slot antenna for, by way of example, a vehicle such as an automobile. The slot antenna includes an electro-conductive coating on the surface of an outer glass ply applied to an area of the window. The conductive coating peripheral edge is spaced from the window edge to define an annular slot antenna. The resonant frequencies of the first two modes are adjustable by introducing a number of slits around the peripheral edges of the conductive coating by removing the coating in, for example, a dark, or black, paint band. A capacitive coupling feed structure is used to excite at least, for example, six modes of the slot antenna to cover the frequency range from, for example, 45 MHz to 860 MHz, which includes the TV VHF/UHF, the Remote Keyless Entry (RKE), and the DAB III frequency bands.
While several embodiments of the invention have been described, it should be apparent that various modifications, alterations and adaptations to those embodiments may occur to persons skilled in the art with the attainment of some or all of the advantages of the present invention. It is therefore intended to cover all such modifications, alterations and adaptations without departing from the scope and spirit of the present invention.
Number | Name | Date | Kind |
---|---|---|---|
3655545 | Gillery et al. | Apr 1972 | A |
3962488 | Gillery | Jun 1976 | A |
4091386 | Luedtke et al. | May 1978 | A |
4707700 | Nagy | Nov 1987 | A |
4721963 | Nagy et al. | Jan 1988 | A |
4768037 | Inaba et al. | Aug 1988 | A |
4849766 | Inaba et al. | Jul 1989 | A |
4864316 | Kaoru et al. | Sep 1989 | A |
4898789 | Finely | Feb 1990 | A |
5083135 | Nagy et al. | Jan 1992 | A |
5355144 | Walton et al. | Oct 1994 | A |
5528314 | Nagy et al. | Jun 1996 | A |
5646637 | Miller | Jul 1997 | A |
5670966 | Dishart et al. | Sep 1997 | A |
5739794 | Nagy et al. | Apr 1998 | A |
5831580 | Taniguchi et al. | Nov 1998 | A |
5898407 | Paulus et al. | Apr 1999 | A |
6020855 | Nagy et al. | Feb 2000 | A |
6097345 | Walton et al. | Aug 2000 | A |
6201504 | Aminzadeh et al. | Mar 2001 | B1 |
6271798 | Endo et al. | Aug 2001 | B1 |
6307519 | Livingston et al. | Oct 2001 | B1 |
6317090 | Nagy et al. | Nov 2001 | B1 |
6448935 | Fuchs et al. | Sep 2002 | B2 |
6498588 | Callaghan | Dec 2002 | B1 |
6646618 | Sievenpiper | Nov 2003 | B2 |
6806839 | Lo | Oct 2004 | B2 |
6937198 | Iijima et al. | Aug 2005 | B2 |
7071886 | Doi et al. | Jul 2006 | B2 |
7190316 | Yegin et al. | Mar 2007 | B2 |
20050195115 | Yegin et al. | Sep 2005 | A1 |
Number | Date | Country |
---|---|---|
375415 | Jun 1990 | EP |
561272 | Sep 1993 | EP |
09175166 | Jul 1997 | JP |
2002290145 | Oct 2002 | JP |
Entry |
---|
Walton E.K., “Automotive Conformal Antenna Research at the Ohio State University”, IEEE Antennas and Propogation Society International Symposium (2001). |
Oshima et al., “Use of a Transparent Conductive Thin-film on a Glass Substrate in Active Integrated Antenna Arrays with Double Strong Coupling”, IEEE MTT-S Digest, 1569-1572 (2002). |
Nagy, Louis L., “New Generation of Antennas for Automobile Use”, SAE Special Publications, (1987). |
Number | Date | Country | |
---|---|---|---|
20120098716 A1 | Apr 2012 | US |