The present invention relates to insulating glass units and more particularly to a method and apparatus for indexing elongated window component stock in an elongated window component production line.
Insulating glass units (IGUs) are used in windows to reduce heat loss from building interiors during cold weather. IGUs are typically formed by a spacer assembly sandwiched between glass lites. A spacer assembly usually comprises a frame structure extending peripherally about the unit, a sealant material adhered both to the glass lites and the frame structure, and a desiccant for absorbing atmospheric moisture within the unit. The margins or the glass lites are flush with or extend slightly outwardly from the spacer assembly. The sealant extends continuously about the frame structure periphery and its opposite sides so that the space within the IGUs is hermetic.
There have been numerous proposals for constructing IGUs. One type of IGU was constructed from an elongated corrugated sheet metal strip-like frame embedded in a body of hot melt sealant material. Desiccant was also embedded in the sealant. The resulting composite spacer was packaged for transport and storage by coiling it into drum-like containers. When fabricating an IGU the composite spacer was partially uncoiled and cut to length. The spacer was then bent into a rectangular shape and sandwiched between conforming glass lites.
Perhaps the most successful IGU construction has employed tubular, roll formed aluminum or steel frame elements connected at their ends to form a square or rectangular spacer frame. The frame sides and corners were covered with sealant (e.g., a hot melt material) for securing the frame to the glass lites. The sealant provided a barrier between atmospheric air and the IGU interior which blocked entry of atmospheric water vapor. Particulate desiccant deposited inside the tubular frame elements communicated with air trapped in the IGU interior to remove the entrapped airborne water vapor and thus preclude its condensation within the unit. Thus after the water vapor entrapped in the IGU was removed internal condensation only occurred when the unit failed.
In some cases the sheet metal was roll formed into a continuous tube, with desiccant inserted, and fed to cutting stations where “V” shaped notches were cut in the tube at corner locations. The tube was then cut to length and bent into an appropriate frame shape. The continuous spacer frame, with an appropriate sealant in place, was then assembled in an IGU.
Alternatively, individual roll formed spacer frame tubes were cut to length and “corner keys” were inserted between adjacent frame element ends to form the corners. In some constructions the corner keys were foldable so that the sealant could be extruded onto the frame sides as the frame moved linearly past a sealant extrusion station. The frame was then folded to a rectangular configuration with the sealant in place on the opposite sides. The spacer assembly thus formed was placed between glass lites and the IGU assembly completed.
IGUs have failed because atmospheric water vapor infiltrated the sealant barrier. Infiltration tended to occur at the frame corners because the opposite frame sides were at least partly discontinuous there. For example, frames where the corners were formed by cutting “V” shaped notches at corner locations in a single long tube. The notches enabled bending the tube to form mitered corner joints; but afterwards potential infiltration paths extended along the corner parting lines substantially across the opposite frame faces at each corner.
Likewise in IGUs employing corner keys, potential infiltration paths were formed by the junctures of the keys and frame elements. Furthermore, when such frames were folded into their final forms with sealant applied, the amount of sealant at the frame corners tended to be less than the amount deposited along the frame sides. Reduced sealant at the frame corners tended to cause vapor leakage paths.
In all these proposals the frame elements had to be cut to length in one way or another and, in the case of frames connected together by corner keys, the keys were installed before applying the sealant. These were all manual operations which limited production rates. Accordingly, fabricating IGUs from these frames entailed generating appreciable amounts of scrap and performing inefficient manual operations.
In spacer frame constructions where the roll forming occurred immediately before the spacer assembly was completed, sawing, desiccant filling and frame element end plugging operations had to be performed by hand which greatly slowed production of units.
U.S. Pat. No. 5,361,476 to Leopold discloses a method and apparatus for making IGUs wherein a thin flat strip of sheet material is continuously formed into a channel shaped spacer frame having corner structures and end structures, the spacer thus formed is cut off, sealant and desiccant are applied and the assemblage is bent to form a spacer assembly.
The present application concerns indexing elongated window component stock in an elongated window component production line. A stock supply station for use in a insulated glass unit component production line includes a plurality of rotatable sheet stock coils, an indexing mechanism, and an uncoiling mechanism. The indexing mechanism is coupled to the sheet stock coils for indexing a selected one of the sheet stock coils to an uncoiling position. The uncoiling mechanism selectively uncoils sheet stock from a sheet stock coil indexed to the uncoiling position to thereby provide sheet stock to a downstream processing station.
In one embodiment, the sheet stock coils are individually rotatable about a common axis. The indexing mechanism may comprise a carriage that supports the sheet stock coils and a drive mechanism coupled to the carriage that moves the carriage to selectively position the coils at the uncoiling position. In one embodiment, each sheet stock coil is mounted to a rotatable disk and the uncoiling mechanism selectively engages a radially outer surface of the rotatable disk indexed to the uncoiling position to provide sheet stock to the processing station. The uncoiling mechanism may be positioned to individually drive each of the rotatable sheet stock coils when positioned at the uncoiling position to individually uncoil the sheet stock from each of the coils.
The stock supply station may include a plurality of clamping mechanisms that position an end portion of each of the sheet stock coils such that the end portion of a coil indexed to the uncoiling station is positioned at an entrance of the processing station. A pair of drive rollers may be positioned at the processing station entrance. The pair of drive rollers being selectively moveable between a first position where the drive rollers are spaced apart and a second position where the drive rollers engage the coil end portion positioned at the entrance of the processing station. The drive rollers selectively feed the sheet stock positioned at the entrance of the processing station into the processing station.
The rotatable sheet stock coils can have different sheet stock widths. For commonly used stock sizes, several of the sheet stock coils may have the same width.
A method of changing elongated window component widths in an elongated window component production line reduces the time required for the change. In this method, a sheet stock coil with a first width is automatically indexed to an uncoiling position. The sheet stock having the first width is provided to a downstream processing station for processing. The sheet stock having the first width is severed. A sheet stock coil with a second width is automatically indexed to the uncoiling position while the sheet stock having the first width is being processed by the downstream processing station. The processing of the sheet stock having the first width is completed at the downstream processing station and the downstream processing station is automatically adjusted for processing of the sheet stock having the second width. The sheet stock having the second width is provided to the downstream processing station for processing.
In one embodiment, a processing station that is upstream from the downstream processing station is automatically adjusted for processing of the sheet stock having the second width while the sheet stock having the first width is being processed by the downstream processing station.
In another method of changing elongated window component widths, sheet stock having the first width is provided to a first processing station for processing. The sheet stock having the first width is provided from the first processing station to a second processing station for processing. The first processing station is automatically adjusted for processing of the sheet stock having a second width while the sheet stock having the first width is being processed by the second processing station.
The disclosed system has significant advantages over the system disclosed in U.S. Pat. No. 5,361,476 to Leopold. In that system an entire first spacer frame unit was scrapped each time a new roll was threaded into the system. That first frame was only scrapped, however, after dessicant and adhesive were applied to the frame resulting in waste in both time and materials. The disclosed system avoids excess waste by use of a short piece of scrap frame material that is removed from the system conveyor prior to the dessicant application station.
The '476 patent has a single supply of strip mounted at the beginning of the frame fabrication system. The present system utilizes an automated strip changeover system. Whereas the prior system might take up to 15 minutes to switch in a new roll of strip material once a preceding strip has been exhausted, the present system achieves changeover in less than one minute. Additionally the reliance on operators for changeover increased the possibility in operator error in set up that is avoided by the disclosed system.
The rapid changeover from one roll of strip material to a next roll and the ability to rapidly switch to different width strip material has resulted in efficiencies not achievable in the prior art. In the prior art, the fact that a whole roll of spacer material was used before a change meant that window construction was dependent on receipt of a large batch of frames of a given width. This placed constraints on subsequent manufacturing processes that could be performed and these constraints were not necessarily convenient or compatible with a desire to most efficiently fill customer orders. Use of the presently disclosed system allows rapid changover from one width strip to a next so that repair units for example can be built as needed to replace damaged window units as they occur. The system produces less work in process and real time response to customer orders in a way that increases total manufacturing throughput.
Further features and advantages will become apparent from the following detailed description with reference to the accompanying drawings.
The drawing Figures and following specification disclose a method and apparatus for producing elongated window components 8 used in insulating glass units. Examples of elongated window components include spacer assemblies 12 and muntin bars 130 that form parts of insulating glass units. The new method and apparatus are embodied in a production line which forms sheet metal ribbon-like stock material into muntin bars and/or spacers carrying sealant and desiccant for completing the construction of insulating glass units. While the elongated window components illustrated as being produced by the disclosed method and apparatus are spacers, the claimed method and apparatus may be used to produce any type of elongated window component, including muntin bars.
The Insulating Glass Unit
An insulating glass unit 10 constructed using the method and apparatus of the present invention is illustrated by
The assembly 12 maintains the lites 14 spaced apart from each other to produce the hermetic insulating “insulating air space” 20 between them. The frame 16 and the sealant body 18 co-act to provide a structure which maintains the lites 14 properly assembled with the space 20 sealed from atmospheric moisture over long time periods during which the unit 10 is subjected to frequent significant thermal stresses. The desiccant body 22 removes water vapor from air, or other volatiles, entrapped in the space 20 during construction of the unit 10.
The sealant body 18 both structurally adheres the lites 14 to the spacer assembly 12 and hermetically closes the space 20 against infiltration of airborne water vapor from the atmosphere surrounding the unit 10. The illustrated body 18 is formed from a “hot melt” material which is attached to the frame sides and outer periphery to form a U-shaped cross section.
The structural elements of the frame 16 are produced by the method and apparatus of the present invention. The frame 16 extends about the unit periphery to provide a structurally strong, stable spacer for maintaining the lites aligned and spaced while minimizing heat conduction between the lites via the frame. The preferred frame 16 comprises a plurality of spacer frame segments, or members, 30a-d connected to form a planar, polygonal frame shape, element juncture forming frame corner structures 32a-d, and connecting structure 34 for joining opposite frame element ends to complete the closed frame shape.
Each frame member 30 is elongated and has a channel shaped cross section defining a peripheral wall 40 and first and second lateral walls 42, 44. See
The frame is initially formed as a continuous straight channel constructed from a thin ribbon of stainless steel material (e.g., 304 stainless steel having a thickness of 0.006-0.010 inches). Other materials, such as galvanized, tin plated steel, or aluminum, may also be used to construct the channel. The corner structures 32 are made to facilitate bending the frame channel to the final, polygonal frame configuration in the unit 10 while assuring an effective vapor seal at the frame corners as seen in
The connecting structure 34 secures the opposite frame ends 62, 64 together when the frame has been bent to its final configuration. The illustrated connecting structure comprises a connecting tongue structure 66 continuous with and projecting from the frame structure end 62 and a tongue receiving structure 70 at the other frame end 64. The preferred tongue and tongue receiving structures 66, 70 are constructed and sized relative to each other to form a telescopic joint 72. See
In the illustrated embodiment the connector structure 34 further comprises a fastener arrangement 85 for both connecting the opposite frame ends together and providing a temporary vent for the space 20 while the unit 10 is being fabricated. The illustrated fastener arrangement (see
In some circumstances it may be desirable to provide two gas passages in the unit 10 so the inert gas flooding the space 20 can flow into the space 20 through one passage displacing residual air from the space through the second passage. The drawings show such a unit. See
The Elongated Window Component Production Line
As indicated previously the spacer assemblies 12 and muntin bars 130 are elongated window components 8 that may be fabricated by using the method and apparatus of the present invention. Elongated window components are formed at high rates of production. The operation by which elongated window components are fashioned is schematically illustrated by
The line 100 comprises a stock supply station 102, a first forming station 104, a transfer mechanism 105, a second forming station 110, a conveyor 113, a scrap removal apparatus 111, third and fourth forming stations 114, 116, respectively, where partially formed spacer members are separated from the leading end of the stock and frame corner locations are deformed preparatory to being folded into their final configurations, a desiccant application station 119 where desiccant is applied to an interior region of the spacer frame member, and an extrusion station 120 where sealant is applied to the yet to be folded frame member. A scheduler/motion controller unit 122 (
The Supply Station 102
The stock supply station 102 is illustrated by
In the illustrated embodiment, the indexing mechanism 126 includes a carriage 132 and a drive mechanism 133 (
Referring to
In the illustrated embodiment, the carriage 132 rides on a track 162. The track 162 includes a front rail 164 and a rear rail 166. An elongated angular member 168 is secured to an upper surface 170 of the front rail 164. The angular member 168 is sized and shaped to co-act with the grooves 140 in the front wheels 136. The angular member 168 and the front wheels 136 form a guide that limits movement of the carriage to be in the direction of axis A. It should be readily apparent that many other types of guides could be employed without departing from the spirit and scope of the claimed invention.
The illustrated track 162 is supported by legs 172. A stop 174 is included at each end of the track. The stops 174 prevent the carriage 132 from moving off the end of the track 162. A sensor 176 is included near each end of the track. The sensors 176 are coupled to the controller 122. The sensors are used to detect when the carriage is approaching a stop 174 and to detect the position of the carriage on the frame to allow the controller to establish a “home” position when the stock supply station 102 is initialized.
Referring to
Referring to
Referring to
A wide variety of sheet stock widths can be loaded on the stock supply station. For example, a window manufacturer that makes one size of elongated window component could load all of the disks with one size of sheet stock. This may allow the line to run for an entire shift or more, without the need for an operator to load a new coil onto the stock supply station. A window manufacturer that makes a variety of different widths of elongated window components would load the stock supply station with sheet stock coils have a variety of different widths and have multiple coils for commonly used sizes.
Referring to
In the illustrated embodiment, a plurality of clamping mechanisms 212 position the end portion 130 of each of the sheet stock coils 124 such that the end portion of a coil indexed to the uncoiling position UP is located at an entrance of the first forming station 104. In the illustrated embodiment, the clamping mechanisms 212 are connected to the coil end support member 154. In the exemplary embodiment, the motor 202 is controlled to define a loop 213 (See
The width and depth of the frames 16 being produced may be changed from time to time as desired by passing wider or narrower sheet stock through the production line. In addition, sheet stock coils eventually run out of stock and need to be replaced. When it is necessary to change coils, the controller 122 simply indexes the next selected sheet stock coil 124 to the uncoiling position PU, to position the sheet stock end 130 at the entrance to the first forming station 104.
In the illustrated embodiment, a loop feed sensor 230 is included at the supply station. The loop feed sensor 230 (
A sensor 175 senses the amount of sheet material left on a given stock coil 124. The preferred sensor includes a IR source positioned above the uncoil position PU. When the coil 124 is full or only partially dispensed the radiation from the source 175 bounces off the sheet material and the sensor does not receive a return signal. When the strip nears an end of its payout, the radiation traverses a path to a reflector 175a and bounces back to a photodetector included in the sensor 175. This signals the controller 122 that the coil at the uncoil position Pu has been dispensed and another coil should be moved into position for unwinding.
The Forming Station 104
The forming station 104 (
Referring to
In one embodiment, the stock feed mechanism 240 is also used to withdraw stock from the stamping station 104 when sizes are changed as will be described in further detail below. The sensor 266 is used by the controller to determine the when the feeding mechanism 240 stops withdrawing stock from the stamping station.
Referring to
The preferred roll set comprises a pair of drive rolls rigidly supported by bearings secured to the framework 268. The rolls define a nip for securely gripping the stock and pulling it through the station 104 past the stamping units 244, 246, 248, 250, 252, 254. In the illustrated embodiment, the rolls grip the stock so tightly that there is no stock slippage relative to either roll as the stock advances.
The illustrated motor 270 is an electric servomotor of the type constructed and arranged to start and stop with precision. Accordingly, stock passes through the station 104 at precisely controlled speeds and stops precisely at predetermined locations, all depending on signals from the controller unit 122 to the motor 270. While a servo motor is disclosed in the production line 100, it may be possible to use other kinds of motors or different stock feeding mechanisms.
The drive transmission 272 is illustrated as a timing belt reeved around sheaves 274, 276 respectively secured to the motor shaft and a shaft of the lower roll. The upper roll being coupled to the lower roll by gears 278 (
Referring to
Each ram assembly 284 is securely mounted atop the framework 238 and connected to a source (not shown) of high pressure operating air via suitable conduits (not shown). Each ram assembly 284 is operated from the controller 122 which outputs a control signal to a suitable or conventional ram controlling valve arrangement (not shown) when the stock has been positioned appropriately for stamping.
Referring to
The stock is fed into the stamping unit 252 by the driving system 242 and stopped with predetermined stock locations precisely aligned in the stamping station 252. The punches are actuated by the ram 286a so that the connector holes 82, 84 are punched on the stock midline, or longitudinal axis. When the punches are withdrawn, the stock feed resumes.
Referring to
Each weakened zone 52 is illustrated as formed by a score line (more than one score line may be included) radiating from a corner bend line location on the stock toward the adjacent stock edge formed by the corner notch 50. The score line is formed by a sharp edged ridge on the anvil 286b. In the illustrated embodiment, the frame members produced by the production line 100 have common side wall depths even though the frame width varies. Therefore, the score line on the anvil 286b are effective to form the corner structures for all the frame members made by the line 100.
Referring to
The corner structure 32a is generally similar to the corner structures 32b-d except the notches 50 associated with the corner 32a differ due to their juncture with the tongue 66. The die assembly therefore comprises a score line forming a ridge like the die set forming the remaining frame corners 32b-d.
In the illustrated embodiment the stamping unit 246 forms muntin bar clip mounting notches in the stock. The muntin bar mounting structures include small rectangular notches. The unit 246 comprises a ram assembly 284d coupled to the notching die assembly 280d. The anvil 286d and hammer 288d of the notching die assembly are configured to punch a pair of small square corner notches 289 on each edge of the stock. Accordingly the ram assembly 284d comprises a single ram which is sufficient to power this stamping operation. A single stroke of the ram actuates the die set to form the opposed notches simultaneously and in alignment with each other along the opposite stock edges.
Referring to
Referring to
Referring to
Referring to
In order to accommodate wider or narrower stock passing through the station 102 die assemblies 280b-e are split. In the illustrated embodiment, one side of each die assemblies is fixed and the opposite side each split die assembly is adjustably movable toward and away from the corresponding fixed die assembly to form different width spacer frames. Thus, each anvil 286b-e is split into two parts and each hammer 288b-e is likewise split. To maintain die assembly 280a in the center of the path of travel P, die assembly 280a is also moveable.
Referring to
Referring to
The illustrated actuating system is controlled by the controller 122 to automatically adjust the station 104 for the stock width provided at the entrance of the station. The width of the stock provided to the station 104 may be detected and the controller automatically adjusts the station 104 to accommodate the detected width. Referring to
The drivescrews 316 are disposed on parallel axes 324 and mounted in bearing assemblies connected to lateral side frame members 330. Each drivescrew is threaded into its respective die assembly driving member 319, 320, 321, 322, 323, 325. Thus when the drivescrews rotate in one direction the driving members 319, 320, 321, 322, 323, 325 force their associated die sections to shift laterally away from the fixed die sections. Drivescrew rotation in the other direction shifts the die sections toward the fixed die sections. The threads on the drivescrews are precisely cut so that the extent of lateral die section movement is precisely related to the angular displacement of the drivescrews creating the movement.
The hammer sections of the die assemblies are adjustably moved by the anvil sections. The guide rods 302 extending between confronting anvil and hammer die sections are structurally strong and stiff and serve to shift the hammer sections of the die assemblies laterally with the anvil sections. The hammer sections are relatively easily moved along the upper platen ways 311.
In the illustrated embodiment, the drive transmission 318 is driven by a motor 317 that is controlled by controller 122. The illustrated transmission 318 comprises a timing belt 332 and conforming pulleys 334 on the drivescrews and motor 317 around which the belt is reeved. In the illustrated embodiment, the pulley 334 that drives the die assembly 252 is larger, since the movement of the die assembly 252 is half that of the movement of the other die assemblies. This keeps the gas holes centered on the path of travel of P. The angular position of the screws is measured and provided to the controller 122. In one embodiment, the station width that corresponds to the measured angular position is displayed on a controller screen 123 where it can be read by the operator. In one embodiment a digital encoder (not illustrated) is associated with one of the jackscrews. The encoder is coupled, via the scheduler/motion controller unit 122. Precise movement of the jackscrews is accomplished using the motor 317 linked to and controlled by motion control unit 122.
The stock moves through the forming station 104 intermittently, stopping completely at each location where it is stamped. The average rate of stock feed can vary widely from one frame member to the next. For instance, if the station 104 forms a spacer frame member for ultimate use in a large “picture” window having no muntin bars, the rate of stock feed is relatively high because the stock is stopped only to stamp the corner structures, the frame ends and to punch holes. The stock moves continuously (and may move rapidly) through the station between corner structure locations.
If the immediately succeeding spacer frame is intended for use in a relatively small window having a number of muntin bars the stock feed must be stopped to stamp all the muntin bar connection locations as well as the remaining stamping operations. The average rate of stock feed in this case is low because of all the stops.
Transfer Mechanism 105
Referring to
Referring to
In the illustrated embodiment, the gripping members 364a, 364b are positioned next to the conveyor 366. A moveable gripping member 364b is coupled to a pneumatic actuator 372. A pressurized air source, coupled to the pneumatic actuator 372, is controlled by the controller 122 to selectively move the gripping member 364b between an engaged position (shown in solid in
Feed Mechanism 360
Referring to
The controller 122 is in communication with the stamping station 104, the gripping member actuator 372, the drive roller actuator 386, and the conveyor 366. When stock 125 that defines a series of units is paid out by the stamping station 104, the controller 122 pivots the gripping member 364b to the spaced apart, disengaged position and positions the gripping members 364a, 364b at the exit of the stamping station 104. This positions the stock material end portion 130 between the gripping members 364. The controller then moves the gripping member 364b to the engaged or gripping position to grip the end portion. The controller 122 moves the pair of drive rollers 379, 380 to the disengaged position and moves the gripping members 364 and the end portion to the roll forming station entrance 382 where the end portion 130 is disposed between the drive rollers. In one embodiment, the movement of the gripping members from the stamping station 104 to the roll forming station 110 is incremental, with stops that correspond to stops required to stamp the material in the stamping station. The controller 122 moves the pair of drive rollers 379, 380 to the engaged position to engage the end portion 130. The controller 122 rotates the drive rollers 379, 380 to feed the elongated sheet stock into the roll forming station. When the end of the stock that forms the series of spacer frame members is paid out of the stamping station 104, it falls from the exit of the stamping station and is pulled into the roll forming station. In an alternate embodiment, the transfer mechanism captures the end and transfers it to the roll forming station.
The Forming Station 110
Referring to
The support frame structure 442 comprises a base 460 fixed to the floor and a roll supporting frame assembly 462 adjustably mounted atop the base 460. The base 460 is positioned in line with the stock path of travel P immediately adjacent the transfer mechanism 105, such that a fixed stock side location of the stamping station is aligned with a fixed stock side location of the roll forming station. The roll supporting frame assembly 462 extends along opposite sides of the stock path of travel P.
Referring to
Each mill roll pair extends between a respective pair of stanchions 486 so that the stanchions provide support against relative mill roll movement in the direction of extent of the path of travel P as well as securing the rolls together for assuring adequate engagement pressure between rolls and the stock passing through the roll nips. The support beam 484 carries three spaced apart linear bearing assemblies 489 on its lower side. Each linear bearing is aligned with and engages a respective trackway 474 so that the beam 484 may move laterally toward and away from the stock path of travel P on the trackways 474. In the illustrated embodiment, the opposite unit 480 is fixed.
Each roll assembly 444-452 is formed by two roll pairs aligned with each other on the path of stock travel to define a single “pass” of the rolling mill. That is to say, the rolls of each pair have parallel axes disposed in a common vertical plane and with the upper rolls of each pair and the lower rolls of each pair being coaxial. The rolls of each pair project laterally towards the path of stock travel from their respective support units 480, 482. The projecting roll pair ends are adjacent each other with each pair of rolls constructed to perform the same operation on opposite edges of the ribbon stock. The nip of each roll pair is spaced laterally away from the center line of the travel path. The roll pairs of each assembly are thus laterally separated along the path of travel.
Each roll comprises a bearing housing 490, a roll shaft 492 extending through a bearing in the housing 490, a stock forming roll 494 on the inwardly projecting end of the shaft and a drive pulley 496 on the opposite end of the shaft which projects laterally outwardly from the support unit. The housings 490 are captured between adjacent stanchions as described above.
The upper support bar 488 carries a nut and screw force adjuster combination 500 associated with each upper mill roll for adjustably changing the engagement pressure exerted on the stock at the roll nip. The adjuster 500 comprises a screw 502 threaded into the upper roll bearing housing 490 and lock nuts for locking the screw 502 in adjusted positions. The adjusting screw is thus rotated to positively adjust the upper roll position relative to the lower roll. The beam 484 fixedly supports the lower mill roll of each pair. The adjusters 490 enable the vertically adjustable mill rolls to be moved towards or away from the fixed mill rolls to increase or decrease the force with which the roll assemblies engage the stock passing between them.
The drive motor 454 is preferably an electric servomotor driven from the controller unit 122. As such the motor speed can be continuously varied through a wide range of speeds without appreciable torque variations.
Referring to
Whenever the motor 454 is driven, the rolls of each roll assembly are positively driven in unison at precisely the same angular velocity. The roll sprockets of successive roll pairs are identical and there is no slip in the chains so that the angular velocity of each roll in the rolling mill is the same as that of each of the others. The slight difference in roll diameter provides for the differences in roll surface speed referred to above for tensioning the stock without distorting it.
The disclosed roll forming station 110 has an automatic chain tensioner for assuring adequate tension in the drive chain 518. In a prior art roll forming system the drive chain would require periodic chain tension adjustment with resultant down time of the system. The presently disclosed roll forming station includes a tensioning sprocket 520 rotatably supported by a movable mounting block 521. In accordance with a presently preferred system at the conclusion of each strip, the controller 122 activates a drive cylinder 522 that has a output shaft coupled to the mounting block 521. This drives the mounting block down thereby driving the sprocket 520 down and tensions the drive chain 518.
A preferred drive cylinder is air actuated and is commercially available as Festo part number KPE-16 or 178467. The air applied to the drive cylinder delivers a uniform tensioning force to the mounting block 521. Prior to this force being applied by a valving system coupled to the controller, the controller 122 releases a clamp 523 which frees the output shaft for movement. Once the sprocket 520 is properly tensioned, the controller applies air through coupling 525 to a brake 524 which clamps the shaft and maintains tension until a next subsequent chain tensioning is performed by the controller 122.
In the exemplary embodiment, the actuating system 458 is driven by the controller to automatically adapt the roll forming station 110 to the width of sheet stock to be presented to roll forming station 110. Referring to
The drive transmission 532 is preferably a timing belt reeved around sheaves on the drivescrews. The actuating system 458 is substantially like the actuating system 200 described above. Further details concerning the construction of the actuating system 458 can therefore be obtained from the foregoing disclosure of the system 200. Details of another suitable roll forming station that can be used in accordance with the present invention can be found in U.S. Pat. No. 5,361,476 to Leopold, which is incorporated herein by reference in its entirety.
Referring to
The Forming Stations 114,116
Referring to
The swedging station 114 comprises a supporting framework 560, first and second swedging units 562, 564 disposed along opposite sides of the stock path of travel P and an actuator system 566 for the swedging units. The framework 560 is mounted on top of the supporting unit 550 and is comprised of structural members welded together to form an actuator supporting superstructure above the path of stock travel P and a work station bed 570. The bed 570 extends beneath and supports the structural members of the superstructure.
The swedging units 562, 564 are essentially mirror images of each other, with the exception that unit 562 is laterally adjustable and unit 564 is fixed, and therefore only the moveable unit 562 is described in detail. Some parts of the laterally adjustable unit 562 may not be required on the fixed unit 564. The swedging unit 562 engages and deforms one frame member tongue side wall to reduce the span of the tongue. This enables the frame ends to be telescoped into engagement when the frame is being assembled. The unit 562 comprises a swedging body 572 stationed on the bed 570, an anvil assembly 574 carried by the body 572 and a swedging tool assembly 576 supported by the body 572 for coaction with the anvil assembly 574.
The swedging body 572 comprises a plate-like base 580 adjacent one lateral side of the frame member path of travel P, a swedge mount member fixed to the base 580 adjacent the path of travel, and an upstanding stop member which projects away from the base toward the actuator system for limiting the travel of the actuator system as the frame tongue is swedged.
The moveable base 580 is supported on the bed 570 by way of forming members (see
The swedge mount member is rigidly fixed to the base 580 and projects upwardly. The member supports the anvil assembly for vertical movement to and away from a frame member being swedged and supports the swedging tool assembly 576 for horizontal motion into and away from engagement with the frame member.
The anvil assembly 574 is positioned to support and engage the tongue side wall at the conclusion of the swedging operation to define the tongue side wall shape. The anvil assembly 574 comprises an elongated anvil member 590 and a pair of actuator rod assemblies 592 supported by the body 572 for transmitting movement from the actuator system 566 to the anvil member.
The anvil member 590 has an elongated blade-like projecting element 596 extending downwardly for engagement with the frame member. The lengths of the anvil member 590 and blade portion 596 correspond to the length of the frame member tongue wall so that the element 596 coextends with the tongue and for supporting the tongue wall throughout its length during swedging.
The actuator rod assemblies 592 force the blade portion 596 of the anvil member 590 into engagement with the frame member during swedging and withdraw the anvil member from the frame member when swedging is completed. The rod assemblies 592 are spaced apart with each projecting through a bore in the swedging member 572. The rod assemblies are identical and therefore only one is illustrated and described.
The swedging tool assembly 576 comprises an elongated tool body 610 extending through a horizontal guide opening in the swedge mount member, a hardened swedging nose element 612 fixed to the end of the body 610 adjacent the travel path P and an actuating cam element 614 adjacent the opposite end of the body 610.
The cam element 614 has a wedge-like face which is engaged by a complementary wedge face 615 of the actuator system to force the tool assembly to swedge the frame tongue. The actuating force serves to move the nose element 612 into engagement with the frame side wall.
The nose element 612 is constructed to match the length of the anvil blade-like element 596 so that the swedging procedure is completed with the nose element and the blade-like element confronting along their lengths with the frame side wall clenched between them. After swedging, the nose element 612 projects slightly from the swedge mount member to provide a lateral guide for frame members passing along the path P.
The actuator system comprises a pair of pneumatic rams 620 attached to the framework 560 above the cut off and swedging stations, an actuator platen 622 fixed to the rams for vertical reciprocating motion when the rams are operated, and actuating cam assemblies 624 supported by the platen for operating the swedging station.
The cam assembly 624 operates the swedging unit 562. The cam assembly 624 includes a camming member 634. The lower end of the camming member defines a wedge face 615 which coacts with the wedge-like face on the cam element 614. The downward travel of the camming member 634 is the same regardless of how wide the frame member in the swedging unit might be.
One of the sets of swedging and actuator parts are laterally fixed and the other set of swedging and actuator parts are movable laterally towards and away from the fixed set by an actuating system 650 to desired adjusted positions for working on stock of different widths. The system 650 firmly fixes the laterally adjustable parts at their laterally adjusted locations for further frame production. As noted, the laterally moveable parts are supported in ways extending transverse to the direction of extent of the travel path P. The actuating system 650 shifts the laterally moveable parts simultaneously along the respective ways between adjusted positions. In the exemplary embodiment, the actuating system 650 is driven by the controller. In the exemplary embodiment, the width of station 114 is automatically adjusted by the controller based on the width of formed spacer frame stock received from the roll forming station.
The preferred and illustrated actuating system 650, like the system 200 described above, provides extremely accurate information regarding placement relative to the stock path of travel P. The system 650 comprises a single threaded drivescrew 652 and a swedging unit drive member 656 driven by the drivescrew.
The drivescrew 652 is mounted in a bearing assembly 658 connected to the framework 60. The drivescrew 652 is threaded into the swedging unit drive member 656. When the drivescrew rotates in one direction the driving member 656 forces the moveable swedging units to shift laterally away from the fixed swedging units. Drivescrew rotation in the other direction shifts the assemblies toward the fixed swedging units. The threads on the drivescrew are precisely cut so that the extent of lateral movement is precisely related to the angular displacement of the drivescrew creating the movement. The moveable actuating cam assemblies are moved by the swedging unit assemblies via the guide rods 636 (
The angular position of the jackscrew is measured and used by the controller to control the width of the station 114. In the exemplary embodiment, the station width is automatically set by the controller based on the width of the elongated spacer frame 16 formed by the roll forming station to be provided to the station 114. In one embodiment a digital encoder (not illustrated) is associated with the jackscrew. In the illustrated embodiment, the fixed swedging and actuator parts are fixed such that the fixed reference of the station 114 is aligned with the fixed references of stations 104 and 110.
Referring to
The actuator system operates the swedging unit at the same time the cut-off unit is operated. Accordingly, when the tongue at the leading end of a frame member is being swedged the preceding frame member is cut-off from the stock and is free to move from the forming stations 114, 116 to the extrusion station 120. Additional details and embodiments of acceptable swedging and forming stations 114, 116 are disclosed in U.S. Pat. No. 5,361,476, which is incorporated herein by reference in its entirety.
In one embodiment the forming stations 114, 116 perform their operations without requiring that the stock moving along the travel path P be stopped or slowed down. This may be accomplished by reciprocating the bed 570 carrying the stations 114, 116 relative to the supporting unit 550 in the direction of the path of travel so that the swedging and cut-off operations are performed on the stock moving along the path. Details of one acceptable reciprocating mechanism are disclosed in U.S. Pat. No. 5,361,476 to Leopold, which is incorporated herein by reference in its entirety.
Conveyor 113
The conveyor 113 transports the formed and separated elongated spacer frames 16 from stations 114, 116 to stations 119, 120 where desiccant 22 and adhesive 18 are applied. The illustrated conveyor 113 includes vertical supports 800a, 800b, 800c, 800d, an elongated support 802 that extends along the path of travel, rollers 804, 805, a belt 806 disposed around the elongated support and rollers, a motor 808, and a guide 810. The vertical supports 800 position the elongated support 802 along the path of travel P. The motor 808 drives roller 804 to drive the belt 806. The motor 808 is controlled by the controller 122. The belt 806 delivers the elongated spacer frame from stations 114, 116 to stations 119, 120. The guide 810 keeps the elongated spacer frames on the path of travel P. The guide 810 is adjustable to accommodate spacer frame members of varying widths.
In the illustrated embodiment, the guide 808 includes a fixed guide member 812 and a laterally adjustable guide member 814. The fixed guide member 808 is aligned with the fixed reference of station 114. In one embodiment, a pair of conveyor guides of stations 119, 120 are symmetrically adjustable with respect to the center of the path of travel P. In the illustrated embodiment, the end 816 of the conveyor 113 is automatically positioned to align the center of the path of travel P defined by the fixed guide member 812 and adjustable guide member 814 with the symmetrically adjustable conveyor guides of stations 119, 120. In the illustrated embodiment, an adjustment mechanism 820 adjusts both the position of the moveable guide member 814 and the position of the end 816 of the conveyor. Use of a single adjustment mechanism assures that the movement of the moveable guide member 814 is coupled to the movement of the end 816. It should be readily apparent that separate mechanisms could be used to position the moveable guide member 814 and the end 816.
The mechanism 820 includes a motor 822, a transmission 824, a guide member drive 826, and a conveyor end drive 828. The motor 822 is controlled by the controller. The transmission 824 is coupled to the motor 822. The transmission 824 includes first and second output shafts 830, 832. The first output shaft 830 is coupled to the guide member drive 826. The guide member drive 826 includes a coupling 834, cam mechanisms 836, and linkages 838. Each cam mechanism 836 includes a first member 840 that is secured to the adjustable guide member 814 and a second member 842 that is secured to the elongated support 802. The cam members 840, 842 are coupled together such that the cam member 840 moves away from the fixed guide member 812 when force in one direction along the path of travel is applied to the cam mechanism 836 and the cam member 840 moves toward the fixed guide member 812 when force in the opposite direction along the path of travel is applied to the cam mechanism 836. For example, the cam mechanism may be configured such that movement of 0.250 inches of the cam member 840 in a direction along the path of travel results in movement of 0.250 inches of the cam member 840 away from the fixed guide member 812. Each cam mechanism 836 is connected to the adjacent cam mechanism. The coupling 834 is fixed to the first cam mechanism 836 that is adjacent to the transmission. The first output shaft 830 includes threads 850 that are threaded into threads in the coupling 834. Rotation of the shaft by the motor 822 applies force to the cam mechanism in the direction of the path of travel, which causes the cam members 840 and the attached guide member to move toward or away from the fixed guide member. The motor 122 is controlled by the controller to control the spacing between the fixed guide member 812 and the moveable guide member 814.
The vertical support 800a is coupled to the elongated support 802 by the conveyor end drive 828 of the adjustment mechanism 820. The conveyor end drive 828 adjusts the lateral position of the elongated support 802 with respect to the vertical support to align the centerline of the conveyor 113 with the centerline of the stations 119, 120. The second output shaft 832 is coupled to the conveyor end drive 828. The conveyor end drive 828 comprises a coupling 860 secured to the elongated support 802. Threads on the output shaft 832 engage threads in the coupling 860. Rotation of the shaft by the motor 822 adjusts the lateral position of the elongated support 802 with respect to the vertical support. Referring to
In the illustrated embodiment, a series of wheels 803 are attached to the conveyor 113 above the belt. The wheels 803 help to maintain the elongated spacer frame members 16 against the conveyor belt. The wheel 803′ that is adjacent to the cutoff station 116 is coupled to a force application actuator 805 that is controlled by the controller. The actuator 805 selectively urges the wheel 803′ toward the conveyor belt. This causes the wheel 803′ to apply pressure to the elongated spacer member that is exiting stations 110, 114, 116. In effect, the actuator 805 and wheel 803′ clamp the spacer frame against the conveyor belt. This allows the conveyor belt to pull the elongated spacer frame 16 out of the stations 110, 114, 116.
Scrap Removal Apparatus 111
In the illustrated embodiment, a scrap piece 294 is stamped at the stamping station 104, roll formed at station 110, and separated from the first elongated spacer at the station 116 each time a new or different stock coil is initially fed into the station 104. This prevents the first elongated unit in the series of elongated units from being scrapped. In one embodiment, the scrap piece 294 is automatically removed from the conveyor 113 before it reaches the desiccant and adhesive application station 120.
The scrap removal apparatus 111 automatically removes the leading scrap piece 294 from the conveyor 113. The scrap removal apparatus includes a path of travel altering mechanism 870 and a translating mechanism 872. The path of travel altering mechanism 870 is positioned along the path of travel P. The path of travel altering mechanism 870 selectively facilitates movement of the scrap piece off the path of travel. The translating mechanism 872 is in communication with the path of travel altering mechanism 870 for moving the scrap piece off of the path of travel. The controller 122 is in communication with the path of travel altering mechanism and the translating mechanism. The controller actuates the path of travel altering mechanism when a scrap elongated window component stock is detected and actuates the translating mechanism 872 to move the scrap elongated window component off the path of travel.
In the embodiment illustrated by
In the embodiment illustrated by
It should be readily apparent to those skilled in the art that the path of travel altering mechanism and the translating mechanism could take a variety of different forms without departing from the spirit and scope of the claims. In the example of
The controller 122 activates two pneumaticly controlled cylinders 874′ spaced on either side of the pushers 910, 912 to move the guide portion 876′ to the raised position shown in
Dessicant Station 119
The desiccant application station 119 is controlled by the controller 122 for dispensing of a desiccant 22 into an interior region of an elongated window spacer 16. The system automatically selects an appropriate desiccant dispensing nozzle and/or automatically determines an appropriate distance D between the desiccant dispensing nozzle and the elongated spacer frame member 16 based on a property of the spacer frame member 16, such as a width W of the spacer frame member. The station 119 applies desiccant 22 to the interior region of the elongated window spacer 16. The desiccant 22 applied to the interior region of the elongated window spacer 16 captures any moisture that is trapped within an assembled insulating glass unit. Details of one acceptable desiccant application station 119 are disclosed in U.S. patent application Ser. No. 10/922,745, filed on Aug. 20, 2004 and assigned to the assignee of the present application. U.S. patent application Ser. No. 10/922,745 is incorporated herein by reference in its entirety.
Sealant/Adhesive Station 120
The extrusion station 120 receives cut off frame members from the conveyor 113 and feeds them endwise to a sealant applying nozzle location where sealant is applied with the frame member in its unfolded “linear” condition. After the sealant is applied the frame member is folded to its finished rectangular configuration, the ends telescoped and the assembly completed as described.
The controller 122 controls the sealant station 120 to dispense of an adhesive 18 Referring to
The frame members 16 proceed to the sealant applying nozzles where the sealant body 18 is applied. Afterward, the frame member is bent to its final rectangular shape and fabrication of the spacer assembly is completed. It should be appreciated that operating control of the production line is closely monitored and exercised by the controller unit 122. In this regard, it is noted that the controller unit 122 is capable of directing a production run of randomly different length frame members (in which a relatively long frame member can be followed immediately by a relatively short frame member) by controlling the speed of operation of the various forming stations and the ribbon stock accumulations. The controller unit 122 is also capable of directing a production run of randomly different width frame members by controlling the width of the various forming stations and the coil that is indexed to the uncoiling position. The ability to quickly and automatically change spacer frame widths greatly adds to the versatility of the line. The automatic changing of width allows spacers for insulating glass units that need to be remade to be easily inserted into the production sequence of the line 100 without significant time delays in production.
In one embodiment, the controller 122 causes the supply station to begin to change the stock size provided at the uncoiling position shortly after the desired amount of stock is paid out, even though one or more downstream processing stations are still processing this stock. Similarly, the controller causes each processing station to change to the next width as soon as the operations being performed on the current stock are completed, even though other downstream stations are still performing operations on the current stock. This reduces the time required to change widths.
In one method of changing elongated window component widths, a sheet stock coil with a first width is automatically indexed to the uncoiling position. The sheet stock having the first width is provided to one or more downstream processing station(s). The sheet stock having the first width is processed at the downstream processing station(s). The sheet stock having the first width is severed. A sheet stock coil with a second width is automatically indexed to the uncoiling position while the sheet stock having the first width is being processed by the downstream processing station. Processing of the sheet stock having the first width is completed at the downstream processing station. The downstream processing station is automatically adjusted for processing of the sheet stock having the second width. The sheet stock having the second width is then provided to the downstream processing station where the sheet stock having the second width is processed.
In one method of changing elongated window component widths, sheet stock having a first width is provided to a first processing station where it is processed. Sheet stock having the first width is provided from the first processing station to the second processing station where it is processed. The first processing station processing station is automatically adjusted by the controller for processing of the sheet stock having a second width while the sheet stock having the first width is being processed by the second processing station. The second processing station completes processing of the sheet stock having the first width and is then automatically adjusted for processing of the sheet stock having the second width.
In the illustrated embodiment, a sheet stock coil with a first width is automatically indexed to the uncoiling position. The sheet stock having the first width is provided to the stamping station 104. The stamping station 104 performs spacer defining stamping operations on the stock. The transfer mechanism 105 provides the stock from the stamping station to the roll forming station 110. The roll forming station 110 rollforms the sheet stock to form elongated window component stock. The elongated window component stock is provided from the roll forming station to the swaging and cutoff stations 114, 116 where the elongated window component stock is swaged and severed to form individual elongated window components. The elongated window components are provided from the swaging and cutoff stations 114, 116 to the dispensing stations 114, 116. The dispensing stations apply desiccant and sealant to the elongated window component. When the stamping station finishes performing its operations on the stock having the first width to define a series of spacers having the first width, the controller causes the stamping station to sever the stock having the first width. The stock driving mechanism 242 drives the leading end of the stock having the first width out of the stamping station 104. The stock feed mechanism 240 reverses to pull the sheet stock out of the stamping station 104 and positions it in the clamping mechanism 212 for threading into the stamping station at a later time. Once the sheet stock having the first width is removed from the stamping station 104, the controller drives the stock supply to index a sheet stock having a second width to the uncoiling position, even though the downstream stations 110, 114, 116, 119, 120 may still be processing the stock having the first width. The sheet stock having the second width is provided into the stamping station 104. The stamping station 104 performs spacer defining stamping operations on the sheet stock having the second width, even though the downstream stations 110, 114, 116, 119, 120 may still be processing the stock having the first width. When the stock having the first width is driven out of the roll forming station 110, the controller drives the roll forming station to accept the stock having the second width and/or begin processing the stock having the second width, even though the downstream stations 114, 116, 119, 120 may still be processing the stock having the first width. When the stock having the first width is pulled out of the stamping and severing stations 114, 116, the controller drives the stamping and severing stations 114, 116 to accept the stock having the second width and/or begin processing the stock having the second width, even though the downstream stations 119, 120 may still be processing the stock having the first width. When the stock having the first width leaves the conveyor 113, the controller drives the conveyor 113 to accept the stock having the second width, even though the downstream stations 119, 120 may still be processing the stock having the first width. When the stock having the first width leaves the dispensing stations 119, 120, the controller drives the dispensing stations to accommodate stock having the second width.
Although the present invention has been described with a degree of particularity, it is the intent that the invention include all modifications and alterations falling within the spirit or scope of the appended claims.
The following application is a divisional application of co-pending U.S. patent application Ser. No. 11/085,711 filed on Mar. 21, 2005 entitled WINDOW COMPONENT STOCK INDEXING, which claims priority U.S. provisional patent application Ser. No. 60/614,308 filed on Sep. 29, 2004. This divisional application claims priority to the above-identified applications and incorporates the above-identified applications herein by reference in their entireties for all purposes.
Number | Name | Date | Kind |
---|---|---|---|
2632641 | Rice | Mar 1953 | A |
3692223 | Laigle et al. | Sep 1972 | A |
3854509 | Bailey | Dec 1974 | A |
4278489 | Horsley | Jul 1981 | A |
4530195 | Leopold | Jul 1985 | A |
4546723 | Leopold et al. | Oct 1985 | A |
4628582 | Leopold | Dec 1986 | A |
5105591 | Leopold | Apr 1992 | A |
5295292 | Leopold | Mar 1994 | A |
5313761 | Leopold | May 1994 | A |
5332166 | Kepes | Jul 1994 | A |
5361476 | Leopold | Nov 1994 | A |
5678377 | Leopold | Oct 1997 | A |
6173484 | McGlinchy et al. | Jan 2001 | B1 |
6244012 | McGlinchy et al. | Jun 2001 | B1 |
6397453 | McGlinchy et al. | Jun 2002 | B1 |
6438819 | McGlinchy et al. | Aug 2002 | B1 |
6470562 | Simone et al. | Oct 2002 | B1 |
6618926 | McGlinchy et al. | Sep 2003 | B2 |
6630028 | Briese et al. | Oct 2003 | B2 |
6651304 | McGlinchy et al. | Nov 2003 | B2 |
6678938 | McGlinchy et al. | Jan 2004 | B2 |
6687982 | McGlinchy | Feb 2004 | B2 |
6708384 | McGlinchy | Mar 2004 | B2 |
6742285 | Shepard | Jun 2004 | B2 |
6745460 | McGlinchy | Jun 2004 | B2 |
6868884 | Briese | Mar 2005 | B2 |
6883278 | McGlinchy et al. | Apr 2005 | B2 |
6889416 | McGlinchy | May 2005 | B2 |
7610681 | Calcei et al. | Nov 2009 | B2 |
20020063184 | Walker | May 2002 | A1 |
20030029960 | Boone et al. | Feb 2003 | A1 |
20060075719 | James et al. | Apr 2006 | A1 |
20090294571 | Calcei et al. | Dec 2009 | A1 |
Number | Date | Country | |
---|---|---|---|
20090294571 A1 | Dec 2009 | US |
Number | Date | Country | |
---|---|---|---|
60614308 | Sep 2004 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11085711 | Mar 2005 | US |
Child | 12537528 | US |