The field of the invention is window guards to prevent pets or small children from falling from windows.
Window guards made of interlocked metal bars are often installed in the bottom of windows in order to prevent small children or pets from falling from the window. Typically, window guards are designed and tested to withstand about 150 pounds of pressure. Window guards are usually recommended for installation in windows located on the second story and above of a building. See U.S. Pat. No. 6,141,912(Graham). Security bars are also know in the art. Such bars deter entry from the outside by burglars. See: U.S. Pat. No. 4,817,324 (Badger); and US Pat Pub. 2009/0277092 (Dochtermann).
Government agencies often recommend the use of operable window guards, in particular, window guards with a release feature which allow them to be released and removed from the inside without the use of separate tools, keys, or excessive force, so as to permit escape in the event of an emergency. When telescoping bars are used, there are often local regulations on the amount the telescoping bars can be extended. There is a concern that the guard provides a strong deterrent to children and pets from falling through the window guard and out the window. For example one locality requires that when a window guard is used with telescoping bars extended to the maximum allowable width, there is a minimum overlap of five (5) inches or ⅓ of the length of the bar, which ever is greater.
According to the invention, a window guard having telescoping horizontal bars that have a predetermined minimum overlap of the telescoping bars which cannot be easily overridden by the window guard installer is provided. Such a device can reliably withstand a predetermined pressure when the window guard is extended to its maximum width.
According to the invention the window guard has a first plurality of spaced horizontal bars which are connected to a first vertical column. Desirably the horizontal bars are welded to a side of the first vertical column. The first vertical column is at least partially hollow through a part of its vertical length preferably hollow through its entire length. The first plurality of hollow horizontal bars are open at the end opposite the first vertical column.
The window guard includes a second plurality of spaced horizontal bars connected to a second vertical column. Desirably the horizontal bars are welded to a side of the second vertical column.
The second plurality of horizontal bars slide into the first plurality of horizontal bars to form a telescoping bar assembly so that the distance between the columns can be adjusted. As a result, the first and second plurality of horizontal bars are partially overlapping.
A cable extends through at least one bar (first preselected bar) of the first plurality of spaced hollow horizontal bars. This bar has an opening abutting the first vertical column. The cable is secured either directly or indirectly to the bar of the second plurality of spaced horizontal bars which slides into the first preselected bar at one end of the cable. The first vertical column has an first opening for the passage of the cable. The opening adjoins, that is touches, the cable containing bar. The opening in the first vertical column abuts the opening in the bar to provide communication between the interior of the cable containing bar and the space in the first vertical column. The cable extends through the opening in the first vertical column. The cable has a stop attached to the end extending through the first vertical column. Since the stop is larger than the opening in the first vertical column, the cable cannot be removed from the interior of the first vertical column. The length of the cable and the position of the stop set a minimum overlap of the first and second plurality of horizontal bars at a preselected amount. The stop is attached after the cable has been extended through the opening in the first vertical column.
In another aspect of the invention, the bar of the second plurality of spaced horizontal bars which slides into the cable containing bar of the first plurality of horizontal bars has a passageway through its length or is hollow. This bar is referred to as the second preselected bar. The second plurality of spaced horizontal bars are connected to a second vertical column. In this embodiment, the second vertical column is at least partially hollow through a part of its vertical length preferably hollow through its entire length. The second preselected bar has an opening at both ends. The second plurality of horizontal bars slide into the first plurality of horizontal bars to form a telescoping bar assembly so that the distance between the columns can be adjusted. The first and second plurality of horizontal bars are at least partially overlapping. A cable preferably metal cable extends through both the first and second preselected bars. Thus at least one pair of telescoped bars has a cable extending therethrough.
The first and second vertical columns have openings for the passage of the cable. These openings are aligned with the cable containing horizontal telescoped bars. The cable extends through the openings in the first and second vertical columns. The cable has a stop attached to each end. The stops are attached after the cable has been extended through the openings. The stops prevent the passage of the ends of the cable through the opening once the stop has been attached to said cable. The stops limit the passage of the cable through the openings in the vertical columns to control the minimum overlap of the first and said second horizontal bars.
The preferred embodiment of the present invention is illustrated in the drawings and examples. However, it should be expressly understood that the present invention should not be limited solely to the illustrative embodiment.
According to the invention, a window guard having telescoping horizontal bars preferably metal desirably steel is provided. On installation, the telescoping bars have a predetermined minimum overlap desirably one-quarter to one-half the length of the bars preferably about one-third of the length of the bars which cannot be overridden by the window guard installer. Such a device can reliably withstand a predetermined pressure desirably 150 lbs. or greater even when the window guard is extended to its maximum width.
According to the invention the window guard has a first plurality of spaced horizontal bars preferably metal desirably steel which are connected to a first vertical column. Desirably the horizontal bars are welded to a side of the vertical column.
The first vertical column is at least partially hollow through a part of its vertical length preferably hollow through its entire length. The first plurality of hollow horizontal bars are open at the end opposite the first vertical column. Desirably the first vertical column is a hollow square bar preferably a metal square bar desirably steel.
The window guard includes a second plurality of spaced horizontal bars desirably steel preferably hollow metal bars optionally solid steel bar connected to a second vertical column preferably a steel column. Desirably the horizontal bars are welded to a side of the second vertical column. Desirably the vertical column is a square bar preferably a metal square bar desirably carbon steel that can be solid or hollow.
The second plurality of horizontal bars slide into the first plurality of hollow horizontal bars to form a telescoping bar assembly so that the distance between the columns can be adjusted. As a result, the first and second plurality of horizontal bars are partially overlapping.
A cable preferably a metal cable desirably a 7×16 GAC galvanized wire rope extends through at least one bar of the first plurality of spaced hollow horizontal bars. This bar has an opening abutting the first vertical column. The cable is secured to the bar of the second plurality of spaced horizontal bars which slides into the preselected bar at one end of the cable. The first vertical column has a first opening for the passage of the cable. The opening adjoins the preselected bar. The opening in the first vertical column abuts the opening in the preselected bar to provide communication between the interior of the preselected bar and the hollow in the first vertical column. The cable extends through the opening in the first vertical column. The cable has a stop attached to the end extending through the first vertical column. Since the stop is larger than the opening in the first vertical column, the cable cannot be removed from the interior of the first vertical column. The length of the cable and the position of the stop set a minimum overlap of the first and said second plurality of horizontal bars at a preselected amount. Desirably the minimum overlap is set at one-quarter to one-half the length of a horizontal bar desirably one-third or greater desirably about one-third which cannot be overridden by the window guard installer. The stop is attached after the cable has been extended through the opening in the first vertical column. Optionally multiple bars of the telescoping assembly can contain metal cable. Corresponding openings in the vertical columns are then provided as described for one bar containing cable.
In another aspect of the invention, the window guard has a first plurality of spaced hollow horizontal bars desirably metal preferably steel connected to a first vertical column preferably a steel column, desirably a hollow square column preferably a metal square column desirably steel. Desirably the first plurality of spaced horizontal bars are welded to the first vertical column. Desirably three to five horizontal bars are provided. The first vertical column is at least partially hollow through a part of its vertical length preferably hollow its entire length. The plurality of first horizontal bars has openings on the end opposite to the end connected to the first vertical column. At least one of the first plurality of hollow horizontal bars has an opening adjacent the first vertical column.
The window guard according to the invention has a second plurality of spaced horizontal bars preferably hollow desirably metal preferably steel bars corresponding in number to the first plurality of spaced hollow horizontal bars. Desirably at least one of the second plurality of horizontal bars has a passageway through its length. The second plurality of horizontal bars are connected preferably welded to a second vertical column that is desirably metal preferably steel. The second vertical column is desirably at least partially hollow through a part of its vertical length. Preferably the second vertical column is hollow along its entire length. Preferably one of the second plurality of horizontal bars has an opening at both ends. Desirably all the second plurality of horizontal bars have an opening at both ends. The second plurality of horizontal bars slide into the first plurality of horizontal bars to form a telescoping bar assembly so that the distance between the columns can be adjusted. The first and second plurality of horizontal bars are overlapping a preselected amount. Desirably, there is a minimum overlap of five (5) inches or one-third ⅓ of the length of the bar, which ever is greater.
A cable preferably metal desirably a 7×16 GAC galvanized wire rope extends through at least one of the first plurality of horizontal bars and preferably through at least one of the second horizontal bars of the telescoping assembly. Thus desirably at least one pair of telescoped bars has a cable extending therethrough.
The first vertical column has a first opening for the passage of the cable. Desirably the second vertical column has a first opening for the passage of the cable. The openings are aligned with the horizontal telescoped bars containing cable. Desirably the first opening extends through the wall of the column adjacent the attached horizontal bars. Desirably a second larger opening is provided on the wall of the vertical column opposite to the wall to which the horizontal bar are attached as well. The second opening is aligned with the first opening. The cable extends through the openings in the first and desirably the second vertical columns adjacent the horizontal bar containing the cable. Preferably the cable is contained in the horizontal bar that is located nearest the mid-point of the vertical columns. The cable has a stop desirably an aluminum button attached to at least one end preferably to each end of the cable. Desirably the stop is substantially inaccessible during installation and use. Preferably the stop is recessed from the outside of the vertical column. Desirably the stop is closed off from the outside of the column so that the stop is substantially inaccessible from the outside. The stop is larger than the first opening adjacent the horizontal bars to stop the cable end from passing through and thereby limit the amount the horizontal bar can be moved apart. The stops are attached after the cable has been extended through the first and second openings. The first opening adjoining the horizontal bars is smaller than the opposite opening (second opening). The aluminum button (stop) can be forced through the second larger opening, but it is too large to pass through the first opening adjacent the horizontal bars. The stops prevent the passage of the ends of the cable through the first opening once the stop has been attached to the cable to limit the maximum distance between the columns. The stops limits the passage of the cable through the opening to control the minimum overlap of the first and the second plurality of horizontal bars. The length of the cable between the stops is selected to limit the telescoping of the bars to a preselected amount, desirably one-quarter to one-half preferably about one-third of the length of one of the horizontal bars which cannot be overridden by the window guard installer.
Desirably the second vertical column has holes at the top and bottom of the column. Desirably the holes are both perpendicular and parallel to the welded horizontal bars to allow the window guard to be attached either inside or outside a window frame.
As best seen in
As best seen in
As best shown in shown in
As best seen in
The foregoing is considered as illustrative only to the principals of the invention. Further, since numerous changes and modification will occur to those skilled in the art, it is not desired to limit the invention to the exact construction and operation shown and described above, and accordingly, all suitable modifications and equivalents may be resorted to, falling within the scope of the invention.
Number | Name | Date | Kind |
---|---|---|---|
533937 | Wiedinger | Feb 1895 | A |
935673 | Miller | Oct 1909 | A |
953197 | Drinkwater | Mar 1910 | A |
958481 | Drinkwater | May 1910 | A |
1123930 | Ryan | Jan 1915 | A |
1481615 | Meyer | Jan 1924 | A |
1662117 | Kuhl | Mar 1928 | A |
1662167 | Rexinger | Mar 1928 | A |
1734415 | Bierfield | Nov 1929 | A |
1984001 | Tanzer et al. | Jan 1934 | A |
2262800 | Farmer | Nov 1941 | A |
2589878 | Shapiro | Mar 1952 | A |
2755525 | Minot, Jr. | Jul 1956 | A |
2756469 | Cattermole et al. | Jul 1956 | A |
2829712 | Quinn | Apr 1958 | A |
3253296 | Brown | May 1966 | A |
3336060 | Bradford | Aug 1967 | A |
3705468 | Ashworth | Dec 1972 | A |
3870362 | Large | Mar 1975 | A |
4111477 | Rigali | Sep 1978 | A |
4258504 | Hicks | Mar 1981 | A |
4395861 | Fipke et al. | Aug 1983 | A |
4437265 | Turro et al. | Mar 1984 | A |
4671012 | Merklinger et al. | Jun 1987 | A |
4756122 | Snapka | Jul 1988 | A |
4796384 | Warwick | Jan 1989 | A |
4817334 | Badger et al. | Apr 1989 | A |
4837974 | Jokel | Jun 1989 | A |
4884369 | Tatham | Dec 1989 | A |
4899490 | Jokel | Feb 1990 | A |
4939866 | Kluge | Jul 1990 | A |
5070647 | Spialter | Dec 1991 | A |
5207022 | Watt | May 1993 | A |
5241789 | Vacelet | Sep 1993 | A |
5454415 | Bolling et al. | Oct 1995 | A |
5492164 | Gist | Feb 1996 | A |
5628355 | Gist | May 1997 | A |
5683200 | Levy | Nov 1997 | A |
5910076 | Gladney | Jun 1999 | A |
5916074 | Tracy | Jun 1999 | A |
6141912 | Graham et al. | Nov 2000 | A |
6216391 | Garrett | Apr 2001 | B1 |
6296041 | Cicero | Oct 2001 | B1 |
20070056222 | Buchanan | Mar 2007 | A1 |
20090277092 | Dochtermann, III | Nov 2009 | A1 |
Number | Date | Country |
---|---|---|
2030209 | Apr 1980 | GB |
2276901 | Oct 1994 | GB |