Window opening control assemblies that limit the degree of opening of a sash.
Windows include an operable sash which can be opened for ventilation of a room. However, when such windows are used in taller buildings or homes, for instance with a second floor, open windows can pose a risk to certain groups of people, such as children. For instance, a child may crawl or fall out of an open window. Even in windows installed on a first floor a child can fall an appreciable distance and suffer injury.
An operable window assembly includes a frame, and a sash movably coupled relative to the frame. The sash has a closed position, a stop position, a number of open positions, and a fully open position. The window assembly further includes a window opening control assembly coupled with the frame and the sash. The window opening control assembly can be retractable, and can include telescoping members. The window opening control assembly can be used with windows, doors, sliding doors, swinging doors, patio doors, freezer doors, cabinet doors, skylights, roof hatch, roof access doors, etc.
In the following detailed description, reference is made to the accompanying drawings which form a part hereof, and in which is shown by way of illustration specific embodiments in which the invention may be practiced. These embodiments are described in sufficient detail to enable those skilled in the art to practice the invention, and it is to be understood that other embodiments may be utilized and that structural changes may be made without departing from the scope of the present invention. Therefore, the following detailed description is not to be taken in a limiting sense, and the scope of the present invention is defined by the appended claims and their equivalents.
A window assembly 100, such as, but not limited to, a casement window, is shown in
In an option, the window assembly 100 includes a frame 102 and a sash 104 rotatably coupled relative to a frame 102. For example, the sash 104 rotates about a vertical axis. In an example, at least one pane of glass is retained within the sash 104. In an option, the window assembly 100 includes a window drive mechanism and a window opening control assembly 200. It should be noted that as used herein, the window opening control assembly 200 may be used with windows, doors, sliding doors, swinging doors, patio doors, freezer and refrigerator doors, cabinet doors, skylights, roof hatches, roof access doors and the like.
The window opening control assembly 200 is coupled with the sash 104 and the frame 102, and is configured to limit the amount of travel of the sash 104 relative to the frame 102. The window opening control assembly 200 can be released or by-passed to allow full opening of the sash 104 to an infinite number of open positions or to a fully open position.
As shown in
As the sash 104 is opened (e.g., a sash 104 for a casement window in this example), the flexible element 206 extends from the second member 204 until it reaches a cable stop 210 (see
The window opening control assembly 200 can be released, for instance with a multi-step operation. In an option, the window opening control assembly 200 is opened with a two-step operation, which may be less obvious to children to operate. In an option, the multi-step operation includes pressing a first release, and operating a second release. For instance, the first release is a button that is pressed, which allows operation of a lever. The second release, the lever, is depressed and allows for the first member 202 to be uncoupled from the flexible element 206.
In an option, a release member 216 is fixedly coupled with the flexible element 206, and the release member 216 is releasably coupled with the first member 202. In another option, the first and second members 202, 204 are reversed and coupled with the sash 104 and the frame 102, respectively.
As used herein, the release member 216 refers to, among other items, an anchor, catch and/or stop.
In the example window opening control assembly 200 that is shown in
The window opening control assembly 200 further includes a second member 204 for attachment to the other of the sash 104 or the window frame.
During operation, the flexible element 206 is fed from the second member 204 as the second member 204 is moved away from the first member 202 until the flexible element 206 is anchored within the second element 204 and the second element 204 is correspondingly restrained from moving further away from the first member 202 (
As shown
In the example window opening control assembly 200 that is shown in
Embodiments are contemplated where the flexible element 206 is a rope, line, tape, wire, ribbon, cord and/or cable. The type of flexible element 206 that is utilized in the window opening control assembly 200 will depend in part on the type of locking assembly 203 used to secure the flexible element 206 when the first and second members 202, 204 are moved adjacent to one another to engage the flexible element 206 with the locking assembly 203. As an example, the flexible element 206 may be a metal ribbon that is vertically oriented relative to the window to maintain stiffness vertically yet permit rotation horizontally in the case of a casement window. In such an embodiment optionally the locking assembly 203 may be situated on the vertical member of the frame 102.
As shown most clearly in
Although the spring 212 is illustrated as a compression spring, other types of springs may be used to provide retraction of the flexible element 206 (e.g., a torsion spring). In addition, other methods may be used to automatically retract the flexible element 206 relative to the second member 204.
In some embodiments, the locking assembly 203 includes one or more actuators that secure the flexible element 206 until the actuator(s) are moved to release the flexible element 206 (see, e.g., actuators 250A, 250B in
As shown in
Although the first and second members 202, 204 are shown as being coupled with the corners of the window frame 102 and the sash 104, it should be noted that the first and second members 202, 204 could be located elsewhere along the window. In addition, the first and/or second members 202, 204 may be formed as multiple assemblies on a single window. For example, multiple pairs of first and second members 202, 204 are installed at different locations on a window to provide redundant single or double action locking assemblies, described below, and restraints. In one example two single action (single actuator) members including a locking assembly requiring a single actuator to open and release the flexible element are coupled with a window along the sash and the frame. Optionally, the members are spaced from each other to require remote operation from each other and thereby further frustrate operation by children.
In some embodiments, the locking assembly 203 may be configured to automatically grasp and retain the anchor 216 when the first and second members 202, 204 are moved adjacent to one another, for instance from an open position where the flexible element 206 is decoupled from the first member 202. In addition, one or more of the locking assembly 203, tether 207 and anchor 216 may be designed to align the anchor 216 as the locking assembly 203 grasps and retains the flexible element 206 when the first and second members 202, 204 are moved adjacent to one another. For instance, in one example as the first member 202 is moved toward the second member 204 (with the flexible element 206 detached), the anchor 216 is received within a recess 218 (see
Alternatively, the flexible element 206 roughly aligns the anchor 216 (when detached from the locking assembly 203) with the recess 218 in the locking assembly 203 and thereby positions the anchor 216 on the second member 204 for reception and securing within the locking assembly 203. Stated another way, the flexible element provides a structural support that presents the anchor 216 in an orientation configured for reception within the locking assembly 203. For instance, while the flexible element 206 is retained within the second member 204, the portion of the flexible element 206 adjacent to the anchor 216 closely positions the anchor 216 at the second member 204 (see e.g.,
Several options for releasably locking the release member 216 with the first member 202 are shown in
The first linear actuator 350A is biased into a gap 380 in the second rotary actuator 350B by a compression spring 353. The second rotary actuator 350B is biased into a position that restrains the anchor 216 by another compression spring 354.
The second rotary actuator 350B includes a hinged member 360 that is biased into an open position by a compression spring 361. The hinged member 360 cooperates with the rotary actuator 350B to secure the anchor 216. The bias in the compression spring 361 is overcome in order to secure the anchor 216 when the anchor 216 is reseated in the locking assembly 303. During reseating, the hinged member 360 deflects inwardly and then resets within a groove 217 in the anchor 216 to affirmatively secure the anchor 216 in place.
The first linear actuator 450A is biased into a gap 480 in the second rotary actuator 450B by a compression spring 453. The second rotary actuator 450B is biased into a position that restrains the anchor 216 by another compression spring 454.
The second rotary actuator 450B includes a catch member 460 configured for linear movement that is biased into an extended position by a compression spring 461 when the catch member 460 secures the anchor 216. The bias in the compression spring 461 is also overcome in order to secure the anchor 216 when the anchor 216 is reseated in the locking assembly 403. For instance, the anchor 216 deflects the catch member 460 inwardly (toward the linear actuator 450A) until the catch member 460 is free to slide into the groove 217 of the anchor 216.
The first linear actuator 550A is biased by a compression spring 553 such that the second linear actuator 550B is unable to enter a gap 580 in the first linear actuator 550A unless the bias by compression spring 553 is overcome by pressing the first linear actuator 550A. The second linear actuator 550B is then biased into a position within a groove 217 in the anchor 216 by another compression spring 554 to affirmatively secure the anchor 216 in place.
The second linear actuator 550B includes a catch member 560 that is biased into an extended position by a compression spring 561 when the catch member 560 secures the anchor 216. As in previous examples, see for instance
The bias in the torsion spring 653 is overcome in order to secure the anchor 216 when the anchor 216 is reseated in the locking assembly 603. The anchor 216 deflects the first ends 651A, 651B outwardly until the first ends 651A, 651B are free to slide into the groove 217 of the anchor 216.
The anchor 216 extends through an opening 765A in the first linear actuator 750A and an opening 765B in the second linear actuator 750B. The first and second linear actuators 750A, 750B are biased into engagement with the anchor 216 by a compression spring 753. The locking assembly 703 is selectively deactivated by simultaneously manipulating respective levers 754A, 754B on the first and second linear actuators 750A, 750B toward one another to allow the anchor 216 to exit the locking assembly 703 through both openings 765A, 765B in the first and second linear actuators 750A, 750B. Stated another way, the first and second linear actuators 750A, 750B engage in a vice-like engagement with the anchor 216 (e.g., within its groove) by engaging surfaces surrounding the openings 765A, B with anchor. By actuating the levers 754A, 754B the engagement is released.
The bias in the spring 753 is overcome in order to secure the anchor 216 when the anchor 216 is reseated in the locking assembly 703. The anchor 216 pushes through both openings 765A, 765B in the first and second linear actuators 750A, 750B and deflects the first and second linear actuators 750A, 750B outwardly until the first and second linear actuators 750A, 750B are free to slide inward into the groove 217 of the anchor 216.
The first linear actuator 850A and the second rotary actuator 850B are biased into engagement with the anchor 216 by respective compression springs 853, 854. The locking assembly 803 is selectively deactivated by simultaneously manipulating the levers 866A, 866B in the same direction X to allow the anchor 216 to exit the locking assembly 803. In the example embodiment illustrated in
The bias in the springs 853, 854 is overcome in order to secure the anchor 216 when the anchor 216 is reseated in the locking assembly 803. The anchor 216 deflects the fork 867 on the first linear actuator 850A and the projection 881 on the second rotary actuator 850B outwardly until the first linear actuator 850A and the second rotary actuator 850B are free to slide inwardly into the groove 217 of the anchor 216.
The first linear actuator 950A is biased into a gap 980 in the second rotary actuator 950B by a compression spring 953. The second rotary actuator 950B is biased into a position that restrains the anchor 216 by another compression spring 954.
The second rotary actuator 950B includes a hinged member 960 that is biased into an open position by a compression spring 961 when the hinged member 960 secures the anchor 216 (the compression spring 961 is interposed between an inside surface of the hinged member 960 and the second rotary actuator 950B). The bias in the compression spring 961 is also overcome in order to secure the anchor 216 when the anchor 216 is reseated in the locking assembly 903. During reseating, the hinged member 960 deflects inwardly and then resets within a groove 217 in the anchor 216 to affirmatively secure the anchor 216 in place.
The bias in the spring 1053 is overcome in order to secure the anchor 216 when the anchor 216 is reseated in the locking assembly 1003. The anchor 216 pushes on both tines 1079 of the linear actuator 1050 to deflect the linear actuator 1050 until the tines 1079 are free to slide into the groove 217 of the anchor 216.
The first linear actuator 1150A and the second linear rotary actuator 1150B are biased into engagement with the anchor 216 by respective compression springs 1153, 1154. The anchor 216 is seated within a recess 1177 surrounded by one or more tines 1179 on the linear actuator 1150 when the anchor is secured by the locking assembly 1003. As the lever 1166A of the linear actuator 1050 is manipulated in the appropriate direction X, the anchor 216 is able to unseat from the recess 1077 in the linear actuator 1050. The anchor 216 is also secured below a projection 1181 on the rotary actuator 1150B when the anchor is secured by the locking assembly 1103. In addition, as the button 1166B of the linear actuator 1050 is manipulated in the appropriate direction Y, the bias in the spring 1154 is overcome and the anchor 216 unseats from the below the projection 1181 on the rotary actuator 1150B and exits the locking assembly 1103. Therefore, the locking assembly 1103 is selectively deactivated by manipulating lever 1166A and then pressing push button 1166B to allow the anchor 216 to exit the locking assembly 1103.
The illustrated example second rotary actuator 1154B is in the form of a push button 1166B. It should be noted that it is contemplated to have either, or both, of the first and second actuators 1150A, 1150B operate in the form of a push button in this embodiment as well as any of the other example embodiments described herein.
In addition, although the first actuator 1150A includes tines 1179 that secure the anchor 216 and the second rotary actuator 1150B includes a projection 1181 that engages the anchor 216, it should be noted that it is contemplated to have various other types of securing features engage the anchor 216 in this embodiment as well as any of the other example embodiments described herein. As examples, any of the actuators described herein may have a securing feature, including, but not limited to a fork, a tine, a catch, projection and the like.
The bias in the springs 1153, 1154 is overcome in order to secure the anchor 216 when the anchor 216 is reseated in the locking assembly 1103. The anchor 216 deflects the tines 1179 on the first linear actuator 1150A and the projection 1181 on the second rotary actuator 1150B outwardly until the tines 1179 on the first linear actuator 1150A and projection 1181 on the second rotary actuator 1150B are free to slide into the groove 217 of the anchor 216.
When the sash 104 of the window assembly 100 is being opened, the sash 104 will open to the length of the extended telescoping assembly 232 (see
The release assembly 224 is further coupled with the block 220, for example, with a cylinder 225. The release assembly 224 is operable to be released from the openings of the rail 222, for example, when it is desirable for the sash 104 to open past the stop position. To release from the stop position, the user would back the sash 104 toward a more closed position, and then release the release assembly 224. In an option, the release assembly 224 includes a two opposing levers 230 that are coupled together with a bias member or a re-coil mechanism, such as, but not limited to, a torsion spring 229. To release the release assembly 224, the operator closes the sash 104 slightly to allow the lever arms 230 to disengage from the openings in the rail 222, and a second hand of the operator is used to depress both levers 230 and hold while cranking the sash 104 open past the stop position. In another option, the release can be done with a single-handed operation. For example, the sash 104 moves to the stop position. To release the release assembly 224, a first lever is depressed and the lever remains depressed. A second lever or button is depressed, operated, or manipulated and the sash 104 is released from the stop position. When the sash 104 is moved past the stop position, the engaging structures at the ends of the levers 230 would release and the levers 230 ride on the rail 222 again. As examples, the engaging structures may include, but are not limited to, hooks, feet, protrusions, detents, catches, bosses and the like.
After the levers 230 passes the stop position of the rail, the operator can operate without depressing the levers 230. In an option, when the sash 104 is closed, the sash opening control function of the rail and release assembly 224 will automatically reset and function again when the sash 104 is opened.
During use, the sash 104 is cranked open and the lever catch 256 will allow the sash 104 to be opened until the lever catch 256 engages the catch 250 on the frame 102 at a stop position. The operator 258 is actuated and the linkage 254 causes the releasable lever catch 256 to rotate and disengage from the catch 250, and the sash 104 can be opened past the stop position. When the sash 104 is moved toward the closed position, in an option, there is automatic re-engagement. For example, the releasable lever catch 256 is automatically re-engaged with the catch 250 when the sash 104 is moved past the stop position, or upon fully closing the sash 104.
Several advantages of the window opening control assembly include, but are not limited to, the retractable flexible element, as well as other elements, do not protrude into the egress opening. Additional advantages include automatic re-engagement upon full closure of the window sash, non-handed assembly, and the window opening control assembly is adaptable to multiple window, door, roof hatch, skylight, sliding doors, and other designs.
The window assemblies and window opening control assemblies described herein limit window opening for safety by utilizing a tether that is secured by a locking assembly to restrict opening a window beyond the length of tether unless the locking assembly is released in a particular manner. In addition, the window assemblies and window opening control assemblies reliably and automatically reset the system upon closure by readily reseating an anchor that is at the end of the tether within the locking assembly. The window assemblies and window opening control assemblies also utilize a double action mechanism that requires at least two simultaneous operations, or two separate single operations in the same assembly or different assemblies at different locations in order to release the tether and allow a window to open beyond a certain point.
It is to be understood that the above description is intended to be illustrative, and not restrictive. Many other embodiments will be apparent to those of skill in the art upon reading and understanding the above description. It should be noted that embodiments discussed in different portions of the description or referred to in different drawings can be combined to form additional embodiments of the present application. The scope of the invention should, therefore, be determined with reference to the appended claims, along with the full scope of equivalents to which such claims are entitled.
This patent application claims the benefit of priority, under 35 U.S.C. §119(e), to U.S. Provisional Patent Application Ser. No. 61/295,577, entitled “WINDOW OPENING CONTROL ASSEMBLY AND RELATED METHODS,” filed on Jan. 15, 2010, which is hereby incorporated by reference herein in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
198553 | Von Auer | Dec 1877 | A |
523736 | Cazin | Jul 1894 | A |
2062020 | Engel | Nov 1936 | A |
3897966 | Draughon, Sr. | Aug 1975 | A |
4027907 | Crepinsek | Jun 1977 | A |
4263747 | Coltrin et al. | Apr 1981 | A |
4383666 | Allerding et al. | May 1983 | A |
4577896 | Crepinsek | Mar 1986 | A |
4580819 | Crepinsek | Apr 1986 | A |
4580820 | Baber | Apr 1986 | A |
4639024 | Crepinsek | Jan 1987 | A |
4856229 | Tserng | Aug 1989 | A |
4897961 | Shine | Feb 1990 | A |
5647233 | Chung | Jul 1997 | A |
5669256 | Chung | Sep 1997 | A |
6634681 | Redden | Oct 2003 | B1 |
6684454 | Ehrenreich | Feb 2004 | B2 |
8075038 | Zielinsky | Dec 2011 | B2 |
20110203184 | Nguyen et al. | Aug 2011 | A1 |
Number | Date | Country |
---|---|---|
2572145 | Apr 1986 | FR |
Number | Date | Country | |
---|---|---|---|
20110173895 A1 | Jul 2011 | US |
Number | Date | Country | |
---|---|---|---|
61295577 | Jan 2010 | US |