The invention relates to a cable guide for use with an automotive window regulator assembly.
Passenger car motor vehicles have for many decades featured movable side door glass. A mechanism is required in order to move the glass between the upper closed position and the lower opened position. These mechanisms are generally known as window regulators. Window regulators can be manually operated, or can be driven by a powered actuator, most commonly using an electric motor. One type of window regulator uses a pulley arrangement having a metal cable wrapped around pulleys and a drum driven by an electric motor. Such devices typically use a carrier which engages the door glass. The carrier may be driven along a metal guide rail by the metal cable. Specifically, the electric motor drives the drum, thereby moving the cable about the pulley arrangement and driving the carrier to control the vertical motion of the window glass.
Due to the packaging constrains of some vehicle door panels and other design constraints the electric motor and cable drum of a window regulator assembly may be located near the bottom of the guide rail. In such assemblies, the metal cable spans the length of the guide rail unsupported. To support and guide the metal cable spanning the length of the guide rail, some window regulator assemblies include a cable guide that may be attached to the guide rail. The cable guide is primarily provided to avoid undesirable noise resulting from vibration of the unsupported cable and to adjust the location of the cable to provide clearance with other door components. Conventional cable guides are typically attached to the guide rail at approximately its center using welding or TOX (interlocking metal deformation) joining. Such cable guides also require a bracket be placed between the guide rail and the cable guide.
Despite the satisfactory performance of conventional cable guides, there is constantly a desire to reduced cost, increase ease of assembly, and reduce the weight of automotive components, while providing a desirable durability, low warranty claims, and compliance with performance requirements.
The present disclosure relates to a cable guide for use with an automotive window regulator assembly which addresses the above-referenced desirable attributes. According to one form of the present disclosure, the cable guide includes a body having a guide rail region near a first end of the body and a cable region near a second end of the body. The guide rail region has a rail support surface and the cable region has a cable support surface. The guide rail region and cable region define a recessed region of the body between the first end and the second end of the body. The recessed region has a surface recessed from the rail support surface and the cable support surface. The cable guide further includes an attachment arm with a first portion and a second portion. The first portion of the attachment arm extends from the rail support surface. The second portion of the attachment arm is cantilevered from the first portion such that at least an end of the second portion extends beyond the guide rail region and above the recessed region of the body. The second portion of the attachment arm and the rail support surface define a rail gap. The cable guide further includes a spring tab that extends from the recessed surface. An end of the spring tab extends beyond the rail support surface. The cable guide further includes a cable retention arm having a first portion and a second portion. The first portion of the cable retention arm extends from the cable support surface. The second portion of the cable retention arm is cantilevered from the first portion such that an end of the second portion extends toward the second end of the body, and wherein the second portion of the cable retention arm and the cable support surface define a cable gap.
Further aspects of the invention are explained in greater detail below by means of preferred illustrative embodiment with reference to the attached drawings. The drawings are provided for purely illustrative purposes and are not intended to limit the scope of the present invention.
Further details of the invention are described in more detail with reference to the drawings, in which:
With reference to
The pulley assembly 16 is positioned at the top of the guide rail 12 and acts to redirect and tension the drive cable 20. The motor drive assembly 18 positioned at the bottom of the guide rail 12 is actuated and powered electrically to move the drive cable 20. The drive cable 20 wraps around the pulley assembly 16 and wraps around a pulley within the motor drive assembly 18 where it is driven. Ends of the drive cable 20 may terminate at attachment points on the window carrier 14. The drive cable 20 spans the entire length of the guide rail 12. A cable guide 22 in accordance with the present invention is attached to the guide rail 12 to support the drive cable 20 to reduce noise and rattle caused by vibration of the drive cable 20. The motor drive assembly 18 is affixed to the bottom of the guide rail 12 but could be positioned at other locations depending on application requirements. Similarly the pulley assembly 16 is shown at the top of the guide rail 12 but may be implemented in various other positions depending on the application. The cable guide 22 is attached to the guide rail 12 at a position along the length of the guide rail 12 between the motor drive assembly 18 and the pulley assembly 16. The window regulator assembly 10 is shown as a single rail type system. Alternate implementations may use a pair of separated guide rails provided for better control of the movable glass or other panel.
Referring to
The cable guide 22 further includes an attachment arm 42. As shown, the attachment arm 42 is L-shaped with a first portion 44 and a second portion 46. The attachment arm 42 is integrally formed with the body 24. The first portion 44 and the second portion 46 are integrally formed. The second portion 48 of the attachment arm 42 is configured to be placed through an aperture 13 in a guide rail 12. The area where the first portion 44 and second portion 46 come together or where the first portion 44 transitions to the second portion 46 may be curved, tapered, or angled to facilitate the installation of the cable guide 22 to the guide rail 12. The first portion 44 of the attachment arm 42 extends from the rail support surface 34. As shown, the first portion 44 is perpendicular to the rail support surface 34, however, other suitable angled may be implemented. The second portion 46 of the attachment arm 42 is cantilevered from the first portion 44 such that at least an end 48 of the second portion 46 extends beyond the guide rail region 26 and above the recessed region 38 of the body 24. The end 48 of the second portion 46 of the attachment arm 42 may be curved, blunt, or another geometry to correspond to the geometry of the guide rail 12.
The second portion 46 of the attachment arm 42 and the rail support surface 34 define a rail gap 50. The thickness of the rail gap 50 corresponds to the thickness of the guide rail 12 such that when the guide rail 12 is positioned in the rail gap 50, the second portion 46 of the attachment arm 42 and the rail support surface 34 are in contact with the guide rail 12. The guide rail 12 and the rail gap 50 fit tightly together.
The cable guide 22 further includes a spring tab 52. The spring tab 52 extends from the recessed surface 40 such that an end 54 of the spring tab 52 extends beyond the rail support surface 34. The spring tab 52 is configured to push against an edge 15 of the guide rail 12 when the cable guide 22 is attached to the guide rail 12. The end of the spring tab 52 may form a stopper 56. As shown, the stopper 56 has a stopper wall 58 and a stopper lip 60 perpendicular to the stopper wall 58. In an embodiment including a stopper 56, the stopper wall 58 presses against an edge 15 of the guide rail 12 and the a portion of the guide rail 12 rests upon or abuts the stopper lip 60 such that the stopper lip 60 helps to maintain the alignment of the stopper wall 58 and the edge 15 of the guide rail 12. The spring tab 52 is integrally formed with the body 24 of the cable guide 22. As shown, the spring tab 52 is J-shaped and is perpendicular to the recessed surface 40.
The cable guide 22 further includes a cable retention arm 62. The cable retention arm 62 is L-shaped and has a first portion 64 and a second portion 66. The cable retention arm 62 is integrally formed with the body 24. The first portion 64 and the second portion 66 are integrally formed. The area where the first portion 64 and second portion 66 come together or where the first portion 64 transitions to the second portion 66 may be curved, tapered, or angled. The first portion 64 of the cable retention arm 62 extends from the cable support surface 36. The first portion 64 is perpendicular to the cable support surface 36. The second portion 66 of the cable retention arm 62 is cantilevered from the first portion 64 such that an end 68 of the second portion 66 extends toward the second end 32 of the body 24.
The second portion 66 of the cable retention arm 62 and the cable support surface 36 define a cable gap 70. The cable retention arm 62 is configured to receive a drive cable 20 of a window regulator 10 in the cable gap 70. The thickness of the cable gap 70 is equal to or greater than the thickness or diameter of the drive cable 20 such that the drive cable 20 fits in the cable gap 70. The end 68 of the second portion 66 of the retention arm 62 may form a cable lock 72 to retain the drive cable 20 in the cable gap 70. As shown, the cable lock 72 is a triangle integrally formed with the end 68 of the second portion 66. They hypotenuse of the triangle is positioned near the second end 32 of the body 22 to allow the drive cable 20 to be inserted into the cable gap 70 with ease. A leg of the triangular shaped cable lock 72 borders the cable gap 70 and acts as a wall to keep the drive cable 20 retained within the cable gap 70.
The cable guide 22 is attached to the guide rail 12 of the window regulator assembly 10 by first inserting the edge 15 of the guide rail 12 near the aperture into the area above the recessed portion 38 of the cable guide 22 such that the edge 15 of the guide rail is between the second portion 46 of the attachment arm 42 and the spring tab 52. Maintaining that relative position of the edge 15 of the guide rail 12 between the attachment arm 42 and the spring tab 52, the cable guide 22 is rotated about the guide rail 12 such that the end 48 of the second portion 46 of the attachment arm 42 is inserted into the aperture 15 of the guide rail 12. Continuing to rotate the cable guide 22 about the guide rail 22 causes a portion of the guide rail 12 to move into the rail gap 50 defined by the attachment arm 42 and the rail support surface 34. The rest of the rail support surface 34 proximate the first end 28 of the body 24 comes in contact with the guide rail 12. The spring tab 52 is positioned close to the edge 15 of the guide rail 12 such that the spring tab 52 presses against the edge 15 of the guide rail 12 to secure the cable guide 22 to the guide rail 12. In an embodiment including a stopper 56 on the end 54 of the spring tab 52, the stopper wall 58 presses against an edge 15 of the guide rail 12 and the a portion of the guide rail 12 rests upon or abuts the stopper lip 60 such that the stopper lip 60 helps to maintain the alignment of the stopper wall 58 and the edge 15 of the guide rail 12. The force exerted by the spring tab 52 on the edge 15 of the guide rail 12 reduces looseness which can cause rattle and noise. The drive cable 20 is inserted into the cable gap 70 between the cable retention arm 62 and the cable support surface 36. In an embodiment including a cable lock 72, the cable lock 72 retains the drive cable 20 in the cable gap 70.
As shown in
As shown in
The cable guide 22 may be formed of a plastic material using an injection molding process or any other suitable manufacturing process.
While the above description constitutes the preferred embodiments of the present invention, it will be appreciated that the invention is susceptible to modification, variation and change without departing from the proper scope and fair meaning of the accompanying claims.
Number | Name | Date | Kind |
---|---|---|---|
4433508 | Carletta | Feb 1984 | A |
4663886 | Nakamura | May 1987 | A |
4888916 | Hess | Dec 1989 | A |
5613322 | Kobrehel | Mar 1997 | A |
5617675 | Kobrehel | Apr 1997 | A |
5864987 | Mariel et al. | Feb 1999 | A |
6546672 | Tatsumi et al. | Apr 2003 | B2 |
6810623 | Messlez | Nov 2004 | B2 |
7617633 | Shimura | Nov 2009 | B2 |
8938914 | Hulst et al. | Jan 2015 | B2 |
20040144032 | Smith | Jul 2004 | A1 |
20070180773 | Fortin | Aug 2007 | A1 |
20080005971 | Dickie et al. | Jan 2008 | A1 |
20110010999 | Broadhead | Jan 2011 | A1 |
20130227889 | Matsushita | Sep 2013 | A1 |
Number | Date | Country |
---|---|---|
2 436 370 | Jul 2002 | CA |
2 589 737 | May 2013 | EP |
02272186 | Nov 1990 | JP |
H 10-203162 | Aug 1998 | JP |
2009-299429 | Dec 2009 | JP |
100680740 | Feb 2007 | KR |
WO 2014155774 | Oct 2014 | WO |
Number | Date | Country | |
---|---|---|---|
20170268273 A1 | Sep 2017 | US |