The present invention relates to a window regulator device for automatically opening and closing a window glass of a vehicle by a force that is generated by a power source such as an electric motor. In particular, the present invention relates to a window regulator device including open/close position detection means for detecting whether or not an open/close position of a window glass is situated within a specific positional area that is set in advance.
Conventionally, window glasses mounted onto a side window, a roof window, and the like of a vehicle are manually opened and closed, but currently, most window glasses of a vehicle are automatically opened and closed by a force that is generated by a power source such as an electric motor. When the window glass is automatically closed, a foreign object may be pinched between the window glass and the window frame. There has already been developed a window regulator device having an anti-pinch function, in which when the pinching of the foreign object is detected, an operation of the window glass in a closing direction (closing operation) is stopped, or an operation direction of the window glass is reversed, to thereby eliminate the pinching.
The pinching of the foreign object is generally detected in response to increase in load applied from the window glass side to the power source side, or decrease in operation speed of the window glass. However, the pinching of the foreign object is erroneously detected in some cases. For example, when the window glass provided to the side window of the vehicle is closed so that an open/close position thereof is shifted to the vicinity of a fully closed position, an upper side edge of the window glass may be brought into contact with an inner bottom wall of a weatherstrip provided to the window frame, and the weatherstrip may be pinched between the window frame and the window glass. When the load increases or the operation speed of the window glass decreases due to the pinching of the weatherstrip, the pinching is erroneously detected even though the foreign object is not pinched.
When the pinching is erroneously detected and anti-pinch processing is executed based on the erroneous detection, the operation of the window glass to be closed is suddenly stopped or reversed, with the result that a passenger of the vehicle may feel inconvenience. In order to prevent such an erroneous operation of the window glass caused by the erroneous detection of the pinching, conventionally, an open/close area of the window glass in which the erroneous detection of the pinching frequently occurs (for example, an area of the window glass ranging from a position in the vicinity of the fully closed position to the fully closed position, in which the weatherstrip may be pinched as described above) is set as an insensitive area, and in a case where the open/close position of the window glass is situated within the insensitive area, even when the pinching is detected, the operation based on the detection is inhibited.
In this case, it is necessary to detect whether or not the open/close position of the window glass is situated within the insensitive area. Japanese Patent Application Laid-open No. Hei 11-101058 discloses a window regulator device (motor-driven window opening/closing device) including a cam member formed on an inner periphery side of a pinion gear, which is coupled to an output shaft of an electric motor via a clutch mechanism, and a switch including a contact element arranged so as to be brought into contact with the cam member, the window regulator device being configured to open and close the window glass by a rotational drive force of the output shaft. According to this window regulator device, based on a contact state between the cam member and the contact element, it is detected whether or not the open/close position of the window glass is situated within the insensitive area.
According to the window regulator device described in Japanese Patent Application Laid-open No. Hei 11-101058, the cam member for detecting whether or not the open/close position of the window glass is situated within the insensitive area is formed on the inner periphery side of the rotational member (pinion gear) coupled to the output shaft. As can be seen from FIG. 2 or FIG. 4 of Japanese Patent Application Laid-open No. Hei 11-101058, the pinion gear is arranged in a housing so as to be adjacent to a drive gear, and hence the space is greatly limited. Therefore, the pinion gear is a small member. Further, the cam formed on the inner periphery side of the pinion gear is also a small member. In a case where such a small cam member is used for detecting whether or not the open/close position of the window glass is situated within the insensitive area, detection accuracy may greatly deteriorate due to a slight assembly error. Further, in a case where the shape of the cam member and the mounting angle of the pinion gear are strictly managed in order to prevent deterioration in detection accuracy, manufacturing cost and assembly cost increase.
The present invention has been made to solve the above-mentioned problems, and it is therefore an object of the present invention to provide a window regulator device including open/close position detection means for detecting whether or not an open/close position of a window glass is situated within a specific positional area such as an insensitive area, the window regulator device being capable of suppressing deterioration in detection accuracy of the open/close position to be detected by the open/close position detection means.
The present invention discloses a window regulator device, including: a power source; an output shaft connected to the power source and rotatable by a force that is generated by the power source; a drive force transmission mechanism for transmitting a rotational drive force of the output shaft to a window glass of a vehicle so as to open and close the window glass by the rotational drive force of the output shaft; and open/close position detection means for detecting whether or not an open/close position of the window glass is situated within a specific positional area that is an open/close position area set in advance. The open/close position detection means includes: a rotational member rotatable by the rotational drive force of the output shaft; an operation lever configured to avoid engaging with the rotational member when the open/close position of the window glass is situated out of the specific positional area, and engage with the rotational member when the open/close position of the window glass is situated within the specific positional area, the operation lever being rotated by the rotational drive force of the output shaft transmitted via the rotational member when the operation lever engages with the rotational member; and a specific positional area detection switch for performing a switching operation based on a rotational operation of the operation lever.
According to the present invention, the rotation of the output shaft rotatable by the force of the power source is transmitted to the window glass via the drive force transmission mechanism. Accordingly, the window glass is opened and closed along with the rotation of the output shaft. Further, the rotational member rotates by the rotational drive force of the output shaft. The rotational member engages with the operation lever when the open/close position of the window glass is situated within the specific positional area that is set in advance. When the operation lever and the rotational member engage with each other, the operation lever is rotated by the rotational drive force of the output shaft transmitted via the rotational member. Based on such a rotational operation of the operation lever, the specific positional area detection switch performs the switching operation. Thus, based on the switching state of the specific positional area detection switch, it is detected whether or not the open/close position of the window glass is situated within the specific positional area.
As described above, the operation lever is used as a detection member for detecting whether or not the open/close position of the window glass is situated within the specific positional area. The operation lever is a member provided separately from the rotational member, and hence an operation stroke thereof can be increased irrespective of the size of the rotational member. The operation stroke can be increased, and hence, even when a certain amount of displacement has occurred in the arrangement of the operation lever and the specific positional area detection switch, a detection error of the specific positional area based on the displacement can be reduced. Thus, even when the assembly accuracy is not strictly managed, the deterioration in detection accuracy can be suppressed sufficiently.
In the present invention, the electric motor may generally be employed as the “power source”, but any power source may be employed as long as the power source can apply rotational torque to the output shaft. Further, the “specific positional area” is preferred to be the above-mentioned insensitive area, but is not limited thereto. The specific positional area may be such an area that the stop or reverse of the closing operation of the window glass is to be avoided even when the pinching is detected, or an area that is arbitrarily set based on a desired request. Further, as the “specific positional area detection switch”, any type of switch may be employed as long as the switch performs the switching operation based on the rotational operation of the operation lever. For example, as the specific positional area detection switch, there may be employed a contact point switch including a substrate, a conductive portion formed on the substrate, and a movable piece having a base end coupled to a part of the conductive portion and having a tip end spaced apart from the substrate. In a case where such a switch is employed, the switch may be arranged relative to the operation lever so that, for example, when the operation lever is not rotated, the tip end of the movable piece is brought into contact with the conductive portion (or the tip end of the movable piece is spaced apart from the conductive portion) to set the switching state of the switch to the ON state (or OFF state), and when the operation lever is rotated, the tip end of the movable piece is spaced apart from the conductive portion (or the tip end of the movable piece is brought into contact with the conductive portion) to set the switching state of the switch to the OFF state (or ON state).
Further, the window regulator device of the present invention may include, for example, an ECU for outputting an instruction signal for executing anti-pinch processing based on the switching state of the specific positional area detection switch, but may omit such an ECU. In a case where the window regulator device includes such an ECU, the anti-pinch processing is executed based on the instruction signal output from the ECU. On the other hand, even in a case where the window regulator device does not include such an ECU, the specific positional area detection switch itself is integrated into a drive circuit for driving the power source such as an electric motor, and the energized/non-energized state of the power source is switched or the direction of energization of the power source is switched in accordance with the switching state of the switch. With the above-mentioned structure, the anti-pinch processing can be executed. Accordingly, the anti-pinch processing can be executed without using the ECU, and hence the window regulator device having the anti-pinch function can be manufactured at lower cost.
Further, it is preferred that the rotational member include: a first gear supported by the output shaft so as to be rotatable integrally therewith; and a second gear meshing with the first gear and configured to reduce rotation of the first gear, the second gear including an engagement member mounted so as to be engageable with the operation lever. Further, it is preferred that the engagement member be arranged on the second gear so as to avoid engaging with the operation lever when the open/close position of the window glass is situated out of the specific positional area, and engage with the operation lever when the open/close position of the window glass is situated within the specific positional area. Still further, it is preferred that the operation lever be rotated by the rotational drive force of the output shaft transmitted via the second gear when the operation lever engages with the engagement member.
Accordingly, the first gear rotates along with the rotation of the output shaft. Then, the second gear meshing with the first gear performs reduced rotation in a direction opposite to the rotational direction of the first gear. Through the rotation of the second gear, the engagement member mounted onto the second gear also rotates. When the open/close position of the window glass is situated within the specific positional area, the engagement member engages with the operation lever. At the time of the engagement, the operation lever is rotated by the rotational drive force of the output shaft. Based on such a rotational operation of the operation lever, the specific positional area detection switch performs the switching operation. With this structure, at the time of the engagement between the engagement member and the operation lever, the rotational drive force of the output shaft can reliably be transmitted to the operation lever.
The “engagement member” may be formed integrally with the second gear, or may be formed separately from the second gear and then mounted onto the second gear. Considering the manufacturing cost, it is preferred that the engagement member be formed integrally with the second gear and serve as a part of the second gear. Further, The engagement member may be provided to a surface portion of the second gear.
Further, it is preferred that the operation lever be supported by the output shaft so as to be relatively rotatable, and be coupled to the second gear via a coupling pin. That is, it is preferred that the operation lever be supported by the output shaft so as to be relatively rotatable, and rotatably support the second gear via the coupling pin. More specifically, it is preferred that the operation lever be supported by the output shaft so as to be relatively rotatable, and be coupled via the coupling pin to the second gear, which is supported by the coupling pin so as to be relatively rotatable.
When the engagement member formed on the second gear engages with the operation lever, through the engagement, the rotation of the second gear relative to the operation lever is stopped. When the rotation of the second gear is stopped, the second gear revolves about the first gear in the same direction as the rotational direction of the first gear due to the mesh with the first gear. Along with the revolution, the operation lever coupled to the second gear via the coupling pin is rotated about the output shaft (first gear) in the same direction as the rotational direction of the first gear. That is, the rotation of the second gear relative to the operation lever is stopped when the engagement member formed on the second gear engages with the operation lever, and the second gear and the operation lever are integrally rotated through the coupling via the coupling pin while receiving the drive force of the first gear. As described above, along with the revolution of the second gear, the operation lever is rotated reliably.
Further, it is preferred that the open/close position detection means further include: a biasing member for biasing the operation lever in one rotational direction; and an alignment member for regulating rotation of the operation lever that is caused by a biasing force of the biasing member to align a rotational position of the operation lever. Accordingly, through the biasing of the operation lever performed by the biasing member and the regulation of rotation of the operation lever performed by the alignment member, the operation lever is aligned at a desired position.
Further, it is preferred that the operation lever include a tooth portion formed therein, and the rotational member includes: a first gear supported by the output shaft so as to be rotatable integrally therewith; a second gear supported by a support pin so as to be meshable with the first gear and configured to reduce rotation of the first gear; and a third gear supported by the support pin so as to be rotatable integrally with the second gear and including a tooth portion formed at a part of an outer periphery thereof, the tooth portion being meshable with the tooth portion of the operation lever. Further, it is preferred that the tooth portion formed in the third gear be formed at such a position as to avoid meshing with the tooth portion formed in the operation lever when the open/close position of the window glass is situated out of the specific positional area, and mesh with the tooth portion formed in the operation lever when the open/close position of the window glass is situated within the specific positional area. Still further, it is preferred that the operation lever be rotated by the rotational drive force of the output shaft transmitted via the third gear when the tooth portion of the operation lever meshes with the tooth portion formed in the third gear. In this case, it is preferred that the open/close position detection means further include an elastic member for elastically aligning a rotational position of the operation lever, and the operation lever be rotated by the rotational drive force of the output shaft against an elastic force that is generated by the elastic member when the operation lever meshes with the third gear.
Accordingly, the first gear rotates along with the rotation of the output shaft. Then, the second gear meshing with the first gear performs reduced rotation. Further, the third gear supported by the support pin so as to be rotatable integrally with the second gear also rotates. Through the rotation of the third gear, the tooth portion formed in the third gear also rotates. When the open/close position of the window glass is situated within the specific positional area, the tooth portion formed in the third gear meshes with the tooth portion formed in the operation lever. Through the mesh, the third gear and the operation lever engage with each other, and the rotational drive force of the output shaft is transmitted to the operation lever. Accordingly, the operation lever is rotated against the elastic force that is generated by the elastic member, which aligns the operation lever. Based on the rotational operation of the operation lever, the specific positional area detection switch performs the switching operation. As described above, the open/close position detection means is configured so that the operation lever is rotated through the mesh with the third gear, and accordingly the operation lever is rotated reliably.
(First Embodiment)
Hereinafter, a first embodiment of the present invention is described.
As illustrated in
The lift arm 93 is an elongated member and is formed into a tapered shape toward a tip end thereof. The lift arm 93 is fixed to a rotational center position of the sector gear 92 on a base end side thereof. Thus, when the sector gear 92 rotates about the pin 97, the lift arm 93 also rotates in the same direction about the pin 97. Further, a shoe 93a is coupled to the tip end of the lift arm 93.
The first guide rail member 94 is fixed substantially horizontally to a lower portion of the window glass W. A guide groove is formed in the first guide rail member 94 along a longitudinal direction thereof. The shoe 93a is slidably disposed in the guide groove. The second guide rail member 95 is fixed to the door panel. A guide groove is also formed in the second guide rail member 95 along a longitudinal direction thereof.
The equalizer arm 96 includes a first arm 961 and a second arm 962. Each of the first arm 961 and the second arm 962 is an elongated member. Both the arms are joined at base end sides thereof in the vicinity of a substantial center of the lift arm 93. The first arm 961 and the second arm 962 are linearly fixed so as to have the same axis in front view under the state in which both the arms are joined, and are rotatably coupled to the lift arm 93 in the vicinity of the center of the lift arm 93. Further, a shoe 961a is coupled to a tip end of the first arm 961. The shoe 961a is slidably disposed in the guide groove of the first guide rail member 94. A shoe is also coupled to a tip end of the second arm 962, and the shoe is slidably disposed in the guide groove of the second guide rail member 95. Thus, the tip end of the lift arm 93 and the tip end of the first arm 961 are coupled to the guide groove of the first guide rail member 94 via the shoes, and the tip end of the second arm 962 is coupled to the guide groove of the second guide rail member 95 via the shoe. Further, dimensions of the arms are adjusted so that the first guide rail member 94 and the second guide rail member 95 are arranged in parallel to each other.
The output shaft 3 is rotatably supported by the housing 8. The output shaft 3 is rotated by the rotational drive force of the electric motor 2. As described later, an output gear portion is formed in the output shaft 3, and the output gear portion meshes with the tooth portion 921 of the sector gear 92.
In this structure, when the output shaft 3 rotates clockwise in
Meanwhile, when the output shaft 3 rotates counterclockwise in
In the window regulator device including the arm-type drive force transmission mechanism 9 that is operated as described above, rotational motion of the lift arm 93 is converted into linear motion of the window glass W. Thus, at the time of the closing operation of the window glass W, the moment acting on the output shaft 3 due to the load of the window glass W changes depending on a rotational position of the lift arm 93.
The third housing portion 83 is arranged and formed at an upper portion of the second housing portion 82. The third housing portion 83 has a bottom surface 83a extending substantially horizontally to the right of
As illustrated in
The detection unit 5 is housed in the housing 8. The detection unit 5 includes an object pinching detection unit 6 and a position detection unit 7. The object pinching detection unit 6 is disposed in the second housing portion 82. The object pinching detection unit 6 includes a worm wheel 61, a drive force transmission spring 62, the driven plate 63, a washer 64, an object pinching detection plate 65, an object pinching detection switch 66, and a flat spring 67.
The worm wheel 61 is arranged at a lowermost portion of the internal space S of the second housing portion 82 in
A locking portion 611 is formed in the worm wheel 61. The locking portion 611 is held upright from the bottom surface portion 61d, and has a height larger than the height of the outer peripheral wall portion 61a. Further, a plurality of (in this embodiment, four) protruding pieces 612 formed into a projecting shape along a circumferential direction of the outer peripheral wall portion 61a are provided at regular intervals on an upper end surface of the outer peripheral wall portion 61a. Each of the protruding pieces 612 is formed into an arc shape along the outer peripheral wall portion 61a. One end portion of each of the protruding pieces 612 is formed into a tapered shape as illustrated in
The drive force transmission spring 62 is disposed above the bottom surface portion 61d of the worm wheel 61. The drive force transmission spring 62 is formed into an arc shape along the bottom surface portion 61d, and is locked at one end thereof by the locking portion 611.
The driven plate 63 is formed into a substantially disk shape, in which a part of the driven plate 63 in a circumferential direction thereof is cut out into a fan shape. The driven plate 63 has a large-diameter portion 63b having a large diameter and a small-diameter portion 63c having a small diameter, which are arranged with the part cut out into the fan shape as a border therebetween. A cross-like through-hole 63a is formed at a center portion of the driven plate 63. The engagement portion 35 of the output shaft 3 is fitted into the cross-like through-hole 63a. Accordingly, the driven plate 63 is coupled to the output shaft 3 so as to be rotatable integrally with the output shaft 3. Further, the driven plate 63 has its axial movement regulated by the washer 64 arranged at an upper portion of the driven plate 63. In the second housing portion 82, the driven plate 63 having such a shape is coaxially disposed above the worm wheel 61. At this time, the locking portion 611 formed in the worm wheel 61 protrudes through a gap formed by the part of the driven plate 63 cut out into the fan shape, and accordingly interference between the locking portion 611 and the driven plate 63 is prevented. Further, a first protruding piece 63d is formed in the driven plate 63 so as to extend, in
The object pinching detection plate 65 includes a rotary plate 651 formed into a stepped disk shape, and a plurality of protruding pieces 652 provided at regular intervals and formed into a projecting shape along a circumferential direction of the rotary plate 651 in the vicinity of an outer peripheral edge of a lower surface of the rotary plate 651 in
Further, an arc-like long hole 651b is formed in the rotary plate 651 along the circumferential direction thereof. When the object pinching detection unit 6 is housed in the second housing portion 82, the second protruding piece 63e formed in the driven plate 63 and the locking portion 611 formed in the worm wheel 61 protrude through the long hole 651b.
The plurality of protruding pieces 652 are provided along the circumferential direction of the rotary plate 651. Distances in a radial direction from the center of the rotary plate 651 to the protruding pieces 652 are equal to one another. Each of the protruding pieces 652 is formed into an arc shape along the circumferential direction of the rotary plate 651. Further, one end surface of each of the protruding pieces 652 in a longitudinal direction thereof is formed into a tapered shape. The number of the protruding pieces 652 is equal (in this embodiment, four) to the number of the protruding pieces 612 formed on the outer peripheral wall portion 61a of the worm wheel 61. The distance in the radial direction from the center of the rotary plate 651 to each of the protruding pieces 652 is equal to a distance in the radial direction from the center of the worm wheel 61 to each of the protruding pieces 612 formed on the outer peripheral wall portion 61a. Thus, when the assembly of the object pinching detection plate 65 and the driven plate 63 is placed above the worm wheel 61, the protruding pieces 652 face the upper end surface of the outer peripheral wall portion 61a of the worm wheel 61. When the worm wheel 61 and the object pinching detection plate 65 rotate about the output shaft 3, the protruding pieces 652 and the protruding pieces 612 rotate concyclically. Further, when the worm wheel 61 and the object pinching detection plate 65 rotate relative to each other, the protruding pieces 612 and the protruding pieces 652 interfere with each other. In this case, in a case where both the protruding pieces 612 and 652 interfere with each other when the worm wheel 61 rotates in the arrow X direction in
The flat spring 67 has a ring-like part, and plate-like parts radially extending from the ring-like part. The output shaft 3 is inserted through the ring-like part. The flat spring 67 is interposed between the object pinching detection plate 65 and an operation lever 73 described later. Thus, an elastic force of the flat spring 67 acts on the object pinching detection plate 65. By the elastic force, the object pinching detection plate 65 is pressed against the driven plate 63 via the washer 64.
The object pinching detection switch 66 is arranged immediately above the object pinching detection plate 65 in
Note that, a lubricant such as grease is generally applied to a meshing surface between the worm and the worm wheel 61. In order to prevent the grease from flying, a flying prevention plate 4 is provided. The flying prevention plate 4 is placed at a position on the bottom surface 83a of the third housing portion 83, at which the flying prevention plate 4 surrounds the space S in the second housing portion 82.
The position detection unit 7 corresponds to open/close position detection means of the present invention. The position detection unit 7 is disposed in the third housing portion 83. As illustrated in
The operation lever 73 is disposed below the first gear 71 and the second gear 72 in
Further, the operation lever 73 has a first arm portion 73b extending toward one side (right side of
The retention spring 74 is housed in the retention spring housing partition wall 83c that is formed in the third housing portion 83. As illustrated in
As can be seen from
The reverse operation area detection switch 76 is disposed immediately above the second gear 72. Specifically, the reverse operation area detection switch 76 is fixed at such a position that, when the second gear 72 rotates, the tip end portion of the movable piece 763 may be brought into contact with the cam 72a formed on the second gear 72 over a length direction thereof. When the tip end portion of the movable piece 763 is held in contact with the cam 72a, the tip end portion of the movable piece 763 is pressed by the cam 72a and is brought into contact with the second conductive portion 762b on the substrate 761, with the result that the switching state of the reverse operation area detection switch 76 becomes the ON state. On the other hand, when the tip end of the movable piece 763 is not held in contact with the cam 72a, the tip end portion of the movable piece 763 is spaced apart from the second conductive portion 762b on the substrate 761, with the result that the switching state of the reverse operation area detection switch 76 becomes the OFF state. Note that, the insensitive area detection switch 75 and the reverse operation area detection switch 76 may be formed directly on the lid 84.
In the window regulator device structured as described above, when the rotation of the electric motor 2 is transmitted to the worm wheel 61 and the worm wheel 61 rotates in the arrow X direction of
On the other hand, when the worm wheel 61 rotates in an arrow X′ direction of
Next, a switching operation of the object pinching detection switch 66 is described. When the foreign object is not pinched between the window glass W and the window frame at the time of the closing operation of the window glass W, the rotational drive force of the electric motor 2 is transmitted to the output shaft 3 with no change. At this time, the worm wheel 61 and the object pinching detection plate 65 integrally rotate in synchronization.
On the other hand, when the foreign object is pinched between the window glass W and the window frame at the time of the closing operation of the window glass W, the closing operation (raising) of the window glass W is interrupted due to the presence of the foreign object. Therefore, the rotation of the output shaft 3 is stopped. Along with the stop of rotation of the output shaft 3, the rotation of the driven plate 63 and the object pinching detection plate 65 is also stopped. However, the worm wheel 61 continues to rotate in the X direction of
When the worm wheel 61 rotates in the X direction relative to the object pinching detection plate 65, the distance between the protruding piece 612 formed on the worm wheel 61 and the protruding piece 652 formed on the object pinching detection plate 65 is reduced, and then both the protruding pieces interfere with each other.
When the object pinching detection plate 65 is pushed upward through the engagement between the protruding pieces 612 and 652, as illustrated in
As can be seen from the above description, when the object pinching detection plate 65 does not axially move (is not pushed up), that is, when the pinching does not occur, the switching state of the object pinching detection switch 66 becomes the OFF state, and when the object pinching detection plate 65 axially moves (is pushed up) in the direction in which the object pinching detection plate 65 is spaced apart from the worm wheel 61, that is, when the pinching has occurred, the switching state of the object pinching detection switch 66 becomes the ON state. In other words, when the distance between the object pinching detection plate 65 and the worm wheel 61 at the time when the object pinching detection plate 65 is not pushed up is defined as “A” (see
Next, an operation of the position detection unit 7 is described. As can be seen from
In
When the window glass W is closed in a range from the fully opened position to the insensitive area start position, the projecting portion 72b formed on the second gear 72 rotates in the X′ direction along the solid line arrow S of
When the second gear 72 does not engage with the operation lever 73, the rotational drive force of the output shaft 3 is not transmitted to the operation lever 73, and hence the operation lever 73 is not rotated.
When the window glass W is further closed beyond the insensitive area start position, the projecting portion 72b of the second gear 72 engages with the operation lever 73 at the position indicated by the reference symbol 72b″ of
As described above, the insensitive area detection switch 75 performs the switching operation based on the rotational operation of the operation lever 73. Specifically, the switching state of the insensitive area detection switch 75 is the ON state when the operation lever 73 is not rotated, that is, when the open/close position of the window glass W is situated out of the insensitive area, and the switching state of the insensitive area detection switch 75 is the OFF state when the operation lever 73 is rotated, that is, when the open/close position of the window glass W is situated within the insensitive area.
The arrangement relationship between the rotational position of the cam 72a formed on the upper surface of the second gear 72 and the reverse operation area detection switch 76 is also associated with the open/close position of the window glass W, which changes along with the rotation of the output shaft 3. The arrangement relationship between the rotational position of the cam 72a and the reverse operation area detection switch 76 is determined so that, when the open/close position of the window glass W is situated within an area ranging from a position indicated by the line Q of
When the window glass W is closed in a range from the fully opened position to a position immediately before the reverse operation area start position, one end portion K of the cam 72a in a longitudinal direction thereof rotates from a rotational position indicated by the line P of
When the window glass W is closed in a range from the reverse operation area start position to the insensitive area start position, the end portion K of the cam 72a rotates from a rotational position indicated by the line Q of
As can be seen from the above description, the window regulator device of this embodiment includes the object pinching detection switch 66, the insensitive area detection switch 75, and the reverse operation area detection switch 76. The object pinching detection switch 66 performs the switching operation based on whether or not the pinching is detected. The insensitive area detection switch 75 performs the switching operation based on whether or not the open/close position of the window glass W is situated within the insensitive area. The reverse operation area detection switch 76 performs the switching operation based on whether or not the open/close position of the window glass W is situated within the reverse operation area. Table 1 provides a summary of the conditions in which the switching states of the respective switches become the ON state, and the conditions in which the switching states of the respective switches become the OFF state.
As shown in Table 1, when the pinching is detected and the open/close position of the window glass W is situated out of the insensitive area and within the reverse operation area (that is, the open/close position of the window glass W is situated within an area Q-R in
According to the embodiment, the anti-pinch processing is not executed in a case where the open/close position of the window glass W is situated out of the reverse operation area, even when the pinching is detected and the open/close position of the window glass W is situated out of the insensitive area. The reason therefor is as follows.
In a case where the arm-type window regulator device is used as in this embodiment, as shown in the graph of
The anti-pinch processing may be executed based on an instruction signal from an ECU. In this case, the switches 66, 75, and 76 are connected to the ECU, and the ECU monitors the switching states of the respective switches. When the switching states of all the switches are the ON state, an instruction signal for executing the anti-pinch processing is output from the ECU to the electric motor. Accordingly, the anti-pinch processing is executed. However, the use of the ECU may lead to a problem of cost increase. In this respect, the window regulator device of this embodiment includes a drive circuit (electric circuit) in which an energization path from the electric power source to the electric motor 2 is formed so as to drive the electric motor 2. The respective switches are integrated into the drive circuit for energization of the electric motor 2, and a circuit structure of the drive circuit is devised in a predetermined manner. Accordingly, the anti-pinch processing is executed without using the ECU.
The first switch contact point 113 and the second switch contact point 114 are two-input, one-output switch contact points including first input terminals 113a and 114a, second input terminals 113b and 114b, and single output terminals 113c and 114c, respectively. Those switch contact points each selectively switch a connection state between the input and output terminals in accordance with an operation position of an operation switch provided in a vehicle cabin, for opening and closing the window glass. Note that, the operation position of the operation switch is switchable among a neutral position, a window closing position, and a window opening position. When the operation switch is not operated, the operation position is the neutral position. When the window glass is closed, the operation switch is operated so that the operation position becomes the window closing position. When the window glass is opened, the operation switch is operated so that the operation position becomes the window opening position. Further, the high voltage line 111 is connected to the first input terminals 113a and 114a, and the low voltage line 112 is connected to the second input terminals 113b and 114b. When the operation switch is not operated, as illustrated in
The detection switch circuit section 120 includes the object pinching detection switch 66, the insensitive area detection switch 75, the reverse operation area detection switch 76, and a switch line 121 serving as an energization path connecting those switches in series. When the switching states of all the switches are the ON state, one end 121a and another end 121b of the switch line 121 are brought into conduction.
The drive circuit section 130 includes a first latching relay 131 and a second latching relay 132. In this embodiment, those latching relays 131 and 132 are two-coil latching relays including first coils 131d and 132d and second coils 131e and 132e. In the first latching relay 131, when the first coil 131d is energized, a first terminal 131a and a third terminal 131c are brought into conduction, and when the second coil 131e is energized, a second terminal 131b and the third terminal 131c are brought into conduction. Similarly, in the second latching relay 132, when the first coil 132d is energized, a first terminal 132a and a third terminal 132c are brought into conduction, and when the second coil 132e is energized, a second terminal 132b and the third terminal 132c are brought into conduction. Hereinafter, the switching state in which the second terminal 131b and the third terminal 131c of the first latching relay 131 are held in conduction (state illustrated in
Further, the drive circuit section 130 includes a first line 133a, a second line 133b, a third line 133c, and a fourth line 133d as electric power supply lines to the electric motor 2. The first line 133a electrically connects together the third terminal 131c of the first latching relay 131 and the output terminal 113c of the first switch contact point 113. The second line 133b electrically connects together the third terminal 132c of the second latching relay 132 and the output terminal 114c of the second switch contact point 114. The third line 133c is electrically connected at one end thereof to a first electric power supply terminal 2a that is one electric power supply terminal of the electric motor 2. The third line 133c is branched on another end side thereof into two lines. One of the branched lines is connected to the second terminal 131b of the first latching relay 131, and another of the branched lines is connected to the first terminal 132a of the second latching relay 132. The fourth line 133d is electrically connected at one end thereof to a second electric power supply terminal 2b that is another electric power supply terminal of the electric motor 2. The fourth line 133d is branched on another end side thereof into two lines. One of the branched lines is connected to the first terminal 131a of the first latching relay 131, and another of the branched lines is connected to the second terminal 132b of the second latching relay 132. Note that, in this embodiment, the electric motor 2 is rotatable in forward and reverse directions. When a current flows from the first electric power supply terminal 2a toward the second electric power supply terminal 2b, the electric motor 2 rotates in the forward direction, and when a current flows from the second electric power supply terminal 2b toward the first electric power supply terminal 2a, the electric motor 2 rotates in the reverse direction. When the electric motor 2 is driven to rotate in the forward direction, the window glass W is closed, and when the electric motor 2 is driven to rotate in the reverse direction, the window glass W is opened.
Further, the drive circuit section 130 includes a fifth line 133e and a sixth line 133f. The fifth line 133e is connected at one end thereof to the one end 121a of the switch line 121 of the detection switch circuit section 120. The fifth line 133e is branched on another end side thereof into two lines. One of the branched lines is connected to the first coil 131d of the first latching relay 131, and another of the branched lines is connected to the first coil 132d of the second latching relay 132. The sixth line 133f is connected at one end thereof to the another end 121b of the switch line 121. The sixth line 133f is connected at another end thereof to the second line 133b. A first diode 134a is mounted onto the sixth line 133f. The first diode 134a allows a current flowing from one end side of the sixth line 133f (side connected to the another end 121b of the switch line 121) toward another end side thereof (side connected to the second line 133b), and blocks a current flowing in a direction opposite thereto.
Further, the drive circuit section 130 includes a seventh line 133g and an eighth line 133h. The seventh line 133g connects together the second coil 131e of the first latching relay 131 and the second coil 132e of the second latching relay 132. The eighth line 133h is connected at one end thereof to the seventh line 133g, and is connected at another end thereof to the first line 133a. A second diode 134b is mounted onto the eighth line 133h. The second diode 134b allows a current flowing from one end side of the eighth line 133h (side connected to the seventh line 133g) toward another end side thereof (side connected to the first line 133a), and blocks a current flowing in a direction opposite thereto.
Further, the drive circuit section 130 includes a ninth line 133i, a tenth line 133j, and an eleventh line 133k. The ninth line 133i is connected at one end thereof to the first line 133a, and is connected at another end thereof to the second line 133b. In this embodiment, the ninth line 133i is connected on one end side thereof to a part of the first line 133a between a junction point to the output terminal 113c of the first switch contact point 113 and a junction point to the eighth line 133h. Further, the ninth line 133i is connected on another end side thereof to a part of the second line 133b between a junction point to the output terminal 114c of the second switch contact point 114 and a junction point to the sixth line 133f. The tenth line 133j is connected at one end thereof to the ninth line 133i. The tenth line 133j is branched on another end side thereof into two lines. One of the branched lines is connected to a lead wire by which the first coil 131d and the second coil 131e of the first latching relay 131 are connected in series, and another of the branched lines is connected to a lead wire by which the first coil 132d and the second coil 132e of the second latching relay 132 are connected in series.
A third diode 134c and a fourth diode 134d are mounted onto the ninth line 133i. The third diode 134c is provided between the one end of the ninth line 133i (end portion connected to the first line 133a) and the part of the ninth line 133i connected to the tenth line 133j, and the fourth diode 134d is provided between the another end of the ninth line 133i (end portion connected to the second line 133b) and the part of the ninth line 133i connected to the tenth line 133j. That is, the third diode 134c and the fourth diode 134d are provided while sandwiching a junction point between the ninth line 133i and the tenth line 133j. The third diode 134c allows a current flowing from the one end toward the another end of the ninth line 133i, and blocks a current flowing in a direction opposite thereto. On the other hand, the fourth diode 134d allows a current flowing from the another end toward the one end of the ninth line 133i, and blocks a current flowing in a direction opposite thereto.
The eleventh line 133k is connected at one end thereof to the tenth line 133j. The eleventh line 133k is grounded on another end side thereof to the vehicle body. A capacitor 135 is mounted onto the eleventh line 133k.
In such a circuit structure, when the operation switch is not operated (when the operation position is the neutral state), as described above, the second input terminal 113b of the first switch contact point 113 is connected to the output terminal 113c, and the second input terminal 114b of the second switch contact point 114 is connected to the output terminal 114c. When the connection is achieved in this manner, the high voltage line 111 connected to the first input terminals 113a and 114a is disconnected from the electric motor 2, and hence the electric power is not supplied from the positive terminal PT side of the electric power source to the electric motor 2. Therefore, the window glass W is not opened or closed.
Further, when the operation switch is operated so that the window glass W is closed (when the operation position is the window closing position) at the time when the foreign object is not pinched between the window glass W and the window frame, as illustrated in
Further, the low voltage line 112 is connected to the second line 133b via the second switch contact point 114. Further, at this time, the switching state of the second latching relay 132 is the normal state (state in which the second terminal 132b and the third terminal 132c are brought into conduction), and hence the second line 133b and the fourth line 133d are connected to each other via the second latching relay 132. Thus, the negative terminal NT of the electric power source is electrically connected to the second electric power supply terminal 2b of the electric motor 2 via the low voltage line 112, the second switch contact point 114, the second line 133b, the second latching relay 132, and the fourth line 133d.
Therefore, an electric power supply path as indicated by the thick line in
When the operation switch is operated so that the window glass W is opened (when the operation position is the window opening position), as illustrated in
Further, the low voltage line 112 is connected to the first line 133a via the first switch contact point 113. At this time, the switching state of the first latching relay 131 is the normal state, and hence the first line 133a and the third line 133c are connected to each other via the first latching relay 131. Thus, the negative terminal NT of the electric power source is electrically connected to the first electric power supply terminal 2a of the electric motor 2 via the low voltage line 112, the first switch contact point 113, the first line 133a, the first latching relay 131, and the third line 133c.
Therefore, an electric power supply path as indicated by the thick line in
When the pinching of the foreign object is detected at the time of the closing operation of the window glass W (when the operation position of the operation switch is the window closing position), the switching state of the object pinching detection switch 66 becomes the ON state. At this time, when the switching state of the insensitive area detection switch 75 is the ON state and the switching state of the reverse operation area detection switch 76 is also the ON state, both the ends 121a and 121b of the switch line 121 of the detection switch circuit section 120 are brought into conduction. Accordingly, as illustrated in
Through the above-mentioned switching operation of the latching relays, the electric power supply path from the electric power source to the electric motor 2 changes from the path of
When the window glass W is opened as described above in response to the detection of the pinching, the pinching state is eliminated, and hence the switching state of the object pinching detection switch 66 becomes the OFF state again. Then, the energization path indicated by the thick line in
After that, when the operation of the operation switch is stopped and the operation position returns to the neutral position, as illustrated in
After that, when the operation switch is operated so that the operation position of the operation switch becomes the window opening position, a current flows through the path illustrated in
As described above, the window regulator device of the present embodiment includes the electric motor 2 serving as the power source, the output shaft 3 connected to the electric motor 2 and rotatable by the rotational drive force that is generated by the electric motor 2, the drive force transmission mechanism 9 for transmitting the rotational drive force of the output shaft 3 to the window glass W of the vehicle so as to open and close the window glass W by the rotational drive force of the output shaft 3, and the position detection unit 7 for detecting whether or not the open/close position of the window glass W is situated within the insensitive area that is set in advance. Further, the position detection unit 7 includes the first gear 71 and the second gear 72 serving as a rotational member rotatable by the rotational drive force of the output shaft 3, the operation lever 73, and the insensitive area detection switch 75 for performing the switching operation based on the rotational operation of the operation lever 73. Further, the operation lever 73 is configured to avoid engaging with the second gear 72 when the open/close position of the window glass W is situated out of the insensitive area, and engage with the second gear 72 when the open/close position of the window glass W is situated within the insensitive area. Further, the operation lever 73 is rotated as illustrated in
According to this embodiment, the operation lever 73 is used as a detection member for changing the switching state of the insensitive area detection switch 75. The operation lever 73 is provided separately from the rotational member (first gear 71 and second gear 72), and hence an operation stroke thereof can be increased irrespective of the size of the rotational member. The operation stroke can be increased, and hence, even when a certain amount of displacement has occurred in the arrangement of the operation lever 73 and the insensitive area detection switch 75, a detection error of the insensitive area based on the displacement can be reduced. Thus, even if the shape of the operation lever 73, the arrangement relationship between the operation lever 73 and the insensitive area detection switch 75, and the like are not strictly managed, the deterioration in detection accuracy can be suppressed sufficiently.
Further, the rotational member rotatable by the rotational drive force of the output shaft 3 includes the first gear 71 supported by the output shaft 3 so as to be rotatable integrally therewith, and the second gear 72 meshing with the first gear 71 and configured to reduce the rotation speed of the first gear 71, the second gear 72 including the projecting portion 72b formed so as to be engageable with the operation lever 73. Further, the projecting portion 72b is arranged and formed on the second gear 72 so as to avoid engaging with the operation lever 73 when the open/close position of the window glass W is situated out of the insensitive area, and engage with the operation lever 73 when the open/close position of the window glass W is situated within the insensitive area. Further, the operation lever 73 is rotated by the rotational drive force of the output shaft 3 transmitted via the second gear 72 when the operation lever 73 engages with the projecting portion 72b. With this structure, when the second gear 72 and the operation lever 73 engage with each other, the rotational drive force of the output shaft 3 is reliably transmitted to the operation lever 73 via the projecting portion 72b, the second gear 72, and the first gear 71.
Further, the operation lever 73 is supported by the output shaft 3 so as to be relatively rotatable, and is coupled to the second gear 72 via the coupling pin 77 for rotatably supporting the second gear 72. Therefore, when the projecting portion 72b formed on the second gear 72 engages with the operation lever 73, through the engagement, the rotation of the second gear 72 is hindered and the operation lever 73 and the second gear 72 are integrally operable. At the time of the engagement, the second gear 72 revolves about the first gear 71 in the same direction as the rotational direction of the first gear 71 due to the mesh with the first gear 71. Along with the revolution of the second gear 72, the operation lever 73 coupled to the second gear 72 via the coupling pin 77 is rotated about the output shaft 3 (first gear) in the same direction as the rotational direction of the first gear 71. As described above, the rotation of the second gear 72 is regulated through the engagement between the operation lever 73 and the second gear 72, and the operation lever 73 is rotated along with the revolution of the second gear 72 by the rotational force of the first gear 71, with the result that the operation lever 73 is rotated more reliably.
Further, the position detection unit 7 includes the retention spring 74 for biasing the operation lever 73 in the direction (X′ direction) opposite to the direction in which the output shaft 3 rotates at the time of the closing operation of the window glass W (X direction), and the stopper 73g for regulating the rotation of the operation lever 73 that is caused by the biasing force of the retention spring 74 to align the rotational position of the operation lever 73. Therefore, when the projecting portion 72b does not engage with the operation lever 73, the operation lever 73 is reliably aligned at a desired position.
(Second Embodiment)
Next, a second embodiment of the present invention is described. A window regulator device of this embodiment has substantially the same structure as described in the above-mentioned first embodiment except for the position detection unit. Thus, reference is made to the first embodiment for the same components as those in the first embodiment to omit description thereof, and components different from those in the first embodiment are mainly described below.
As described in the above-mentioned first embodiment with reference to
The detection unit 5 includes an object pinching detection unit 6 and a position detection unit 7. The object pinching detection unit 6 has the same structure as described in the above-mentioned first embodiment, and description thereof is therefore omitted herein. The position detection unit 7 includes a first gear 71, a second gear 72, a lever drive gear 78, an operation lever 79, a retention spring 74, an insensitive area detection switch 75, a reverse operation area detection switch 76, and the above-mentioned first support pin 771 and second support pin 772 provided on the third housing portion 83. A circular hole is formed at the center of the first gear 71. The output shaft 3 is inserted through the circular hole, and accordingly the first gear 71 is supported by the output shaft 3 so as to be rotatable integrally therewith. The second gear 72 meshes with the first gear 71. The number of teeth of the second gear 72 is larger than the number of teeth of the first gear 71. Thus, the second gear 72 reduces the rotation speed of the first gear 71. Further, a cam 72a having a projecting shape is formed on an upper surface of the second gear 72 in
The fitting portion 771a of the first coupling pin 771 is fitted into the through-hole 72c having a cross shape and formed in the second gear 72 and the through-hole 78b having a cross shape and formed in the lever drive gear 78. Accordingly, the second gear 72 and the lever drive gear 78 are supported by the first coupling pin 771 so as to be integrally rotatable.
The operation lever 79 is formed into a plate shape, and includes a base portion 79a, a gear portion 79b formed into a fan shape about the base portion 79a and having teeth formed on an outer periphery thereof, and a lever portion 79c formed into a hook shape and extending from the base portion 79a. A circular hole 79d is formed in the base portion 79a. The operation lever 79 is disposed at such a position that the gear portion 79b thereof is meshable with the tooth portion 78a formed on the outer periphery of the lever drive gear 78. The second support pin 772 is inserted through the circular hole 79d so that the operation lever 79 is rotatably supported by the second support pin 772. Note that, the retention spring 74 is mounted onto the second support pin 772. The retention spring 74 engages at one end thereof with the stopper 772a formed on the second support pin 772, and engages at another end thereof with the operation lever 79 mounted onto the second support pin 772. The position of the operation lever 79 is regulated by an elastic force of the retention spring 74.
The insensitive area detection switch 75 and the reverse operation area detection switch 76 have the same structures as the insensitive area detection switch 75 and the reverse operation area detection switch 76 described in the above-mentioned first embodiment with reference to
The insensitive area detection switch 75 is fixed at such a position that, when the operation lever 79 rotates about the second support pin 772, the tip end portion of the movable piece 753 climbs over the step 79f formed in the lever portion 79c of the operation lever 79. When the operation lever 79 is viewed from the insensitive area detection switch 75 fixed at such a position, of the one part D1 and the another part D2 sandwiching the step 79f of the lever portion 79c of the operation lever 79, the one part D1 is closer to the insensitive area detection switch 75 as compared to the another part D2. That is, the height position of the part D1 is higher than the height position of the part D2. When the tip end part of the movable piece 753 is held in contact with the part D1, the movable piece 753 is pressed and the tip end portion thereof is brought into contact with the second conductive portion 752b on the substrate 751, with the result that the switching state of the insensitive area detection switch 75 becomes the ON state. On the other hand, when the tip end portion of the movable piece 753 is held in contact with the part D2, the tip end portion of the movable piece 753 is spaced apart from the second conductive portion 752b on the substrate 751, with the result that the switching state of the insensitive area detection switch 75 becomes the OFF state. Note that, an arrangement relationship between the reverse operation area detection switch 76 and the second gear 72 is the same as the arrangement relationship described in the above-mentioned first embodiment, and description thereof is therefore omitted herein.
In the window regulator device structured as described above, an opening and closing operation of a window glass W and an operation of the object pinching detection unit 6 are the same as the operations described in the above-mentioned first embodiment, and description thereof is therefore omitted herein. An operational component different from that in the first embodiment, specifically, the operation of the position detection unit 7, is described below.
When the output shaft 3 rotates along with the opening and closing operation of the window glass W, the rotation is transmitted to the first gear 71 coupled to the output shaft 3, and the first gear 71 rotates. When the first gear 71 rotates, the second gear 72 meshing with the first gear 71 rotates in a direction opposite to the direction of the first gear 71. Along with the rotation of the second gear 72, the lever drive gear 78 integrally rotates. The rotational position of the tooth portion 78a formed in the lever drive gear 78 relative to the operation lever 79 is determined in advance in association with the open/close position of the window glass W, which changes along with the rotation of the output shaft 3.
When the window glass is closed, the first gear 71 rotates in the X direction of
When the window glass W is closed in a range from the fully opened position to the insensitive area start position, the tooth portion 78a of the lever drive gear 78 rotates from the rotational position indicated by the area T of
When the window glass W is further closed beyond the insensitive area start position, the rotational position of the tooth portion 78a of the lever drive gear 78 is further shifted in the X′ direction from the position illustrated in
As described above, according to this embodiment, when the open/close position of the window glass W is situated out of the insensitive area, the operation lever 79 does not engage with the lever drive gear 78 (rotational member), and the switching state of the insensitive area detection switch 75 becomes the ON state. Meanwhile, when the open/close position of the window glass W is situated within the insensitive area, the operation lever 79 engages with the lever drive gear 78, and the switching state of the insensitive area detection switch 75 becomes the OFF state. Thus, based on the switching state of the insensitive area detection switch 75, it is detected whether or not the open/close position of the window glass W is situated within the insensitive area.
According to this embodiment, the operation lever 79 is used as a detection member for changing the switching state of the insensitive area detection switch 75. The operation lever 79 is a member provided separately from the rotational member (first gear 71, second gear 72, and lever drive gear 78), and hence an operation stroke thereof can be increased irrespective of the size of the rotational member. The operation stroke can be increased, and hence, even if a certain amount of displacement has occurred in the arrangement of the operation lever 79 and the insensitive area detection switch 75, a detection error of the specific positional area based on the displacement can be reduced. Thus, even if the shape of the operation lever 79, the arrangement relationship between the operation lever 79 and the insensitive area detection switch 75, and the like are not strictly managed, the deterioration in detection accuracy can be suppressed sufficiently.
Further, the gear portion 79b of the operation lever 79 includes the tooth portion formed therein. Further, the rotational member to be driven to rotate through the rotation of the output shaft 3 includes the first gear 71 supported by the output shaft 3 so as to be rotatable integrally therewith, the second gear 72 supported by the first support pin 771 so as to be meshable with the first gear 71 and configured to reduce the rotation of the first gear 71, and the lever drive gear 78 (third gear) supported by the first support pin 771 so as to be rotatable integrally with the second gear 72 and including the tooth portion 78a formed at the part of the outer periphery thereof, the tooth portion 78a being meshable with the tooth portion formed in the gear portion 79b of the operation lever 79. The tooth portion 78a formed in the lever drive gear 78 is formed at such a rotational position as to avoid meshing with the tooth portion formed in the gear portion 79b of the operation lever 79 when the open/close position of the window glass W is situated out of the insensitive area, and mesh with the tooth portion formed in the gear portion 79b of the operation lever 79 when the open/close position of the window glass W is situated within the insensitive area. Further, the operation lever 79 is rotated by the rotational drive force of the output shaft 3 transmitted via the lever drive gear 78 when the tooth portion of the operation lever 79 meshes with the tooth portion 78a formed in the lever drive gear 78. With this structure, the rotational drive force of the output shaft 3 is reliably transmitted to the operation lever 79 via the lever drive gear 78, the second gear 72, and the first gear 71.
The position detection unit 7 further includes the retention spring 74 for elastically aligning the rotational position of the operation lever 79, and the operation lever 79 is rotated by the rotational drive force of the output shaft 3 against the elastic force that is generated by the retention spring 74 when the operation lever 79 meshes with the lever drive gear 78. Accordingly, the operation lever 79 is rotated more reliably.
The embodiments of the present invention have been described above, but the present invention should not be interpreted as being limited to the above-mentioned embodiments. For example, in the above-mentioned embodiments, the arm-type window regulator device has been described as an example, but a cable-type window regulator device or other such window regulator device may be employed alternatively. Note that, in a case where the window regulator device is not the arm-type window regulator device, the moment acting on the output shaft does not change depending on the rotational position of the lift arm. Thus, the erroneous detection of the pinching due to the change in moment does not occur, and hence the cam 72a on the second gear 72 and the reverse operation area detection switch 76, which are provided in order to prevent an erroneous operation due to the erroneous detection, may be omitted. Further, in the above-mentioned embodiments, the window regulator device for opening and closing the window glass provided to the side window of the vehicle has been described as an example, but the window regulator device according to the present invention is also applicable as a device for automatically opening and closing a window glass provided to a roof window of the vehicle or other such window glass. The present invention may be modified without departing from the scope of the present invention.
Number | Date | Country | Kind |
---|---|---|---|
2009-224346 | Sep 2009 | JP | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/JP2010/065970 | 9/15/2010 | WO | 00 | 3/22/2012 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2011/040245 | 4/7/2011 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
5749173 | Ishida et al. | May 1998 | A |
6114820 | Nishigaya | Sep 2000 | A |
20050072049 | Spaziani et al. | Apr 2005 | A1 |
20120198770 | Katayama et al. | Aug 2012 | A1 |
Number | Date | Country |
---|---|---|
1187568 | Jul 1998 | CN |
11-101058 | Apr 1999 | JP |
2000-227304 | Aug 2000 | JP |
3217048 | Oct 2001 | JP |
3713792 | Nov 2005 | JP |
Entry |
---|
Combined Office Action and Search Report issued on Dec. 5, 2012, in Chinese Patent Application No. 201080043356.3 with English translation. |
International Search Report issued Dec. 21, 2010, in PCT/JP2010/065970, filed Sep. 15, 2010. |
Number | Date | Country | |
---|---|---|---|
20120192491 A1 | Aug 2012 | US |