Window sash position maintainer

Information

  • Patent Grant
  • 6672009
  • Patent Number
    6,672,009
  • Date Filed
    Wednesday, November 1, 2000
    23 years ago
  • Date Issued
    Tuesday, January 6, 2004
    20 years ago
Abstract
Structure for maintaining a sliding window sash at an intended position with respect to a frame within which the sash moves. The invention serves to retain the sash at a position along an axis generally perpendicular to a plane defined by the window frame. An inwardly facing surface of the frame has formed therein an elongated trough which extends generally parallel to a direction of intended sliding movement of the sash. A blade is mounted within a cavity in the sash and disposed for pivotal movement between a first position, wherein the blade is retracted within an outwardly facing surface of the sash, and a second position, wherein the blade is extended through the outwardly facing surface of the sash into the trough defined within the inwardly facing surface of the frame. The blade is normally biased to the second position, but it can volitionally be retracted to the first position to enable tilting inward or removal of the sash from the window frame.
Description




TECHNICAL FIELD




The present invention deals broadly with the field of windows. More specifically, however, the invention applies to a window, such as double-hung window, wherein a sash slides within a frame. The specific focus of the invention is structure employed to effect retention of the window sash within the frame at an intended location along an axis perpendicular to a plane defined by the window frame within which the sash slides.




BACKGROUND OF THE INVENTION




The prior art includes many types of windows which are employed to bring light into a building. One type of window known in the prior art is a double-hung window. Such a window typically employs two vertically movable sash assemblies, each carrying its own pane of glass, which are movable, typically, vertically within the frame.




Opposed, inwardly facing lateral portions of the frame. are typically provided with a balance tube which includes appropriate structure to render the window sashes more safe. Balance mechanisms are employed within the balance tube in order to deter undesirable, unintended slamming of a sash such that injury could result.




It is also desirable, however, that the sashes be able to be tilted inward or removed for cleaning of the glass portions of the sash assemblies. Various mechanisms have been employed to release a sash from a position which it is intended to occupy within the frame. Typically, a sash is desired to be located at a position along an axis, generally perpendicular to a plane defined by the frame, for sliding movement along that position. Various types of structures have been utilized to effect maintenance of a sash in the desired position yet allow it to be tilted inward or removed for cleaning. One such structure utilizes a pair of laterally extending latch mechanisms carried by the sash. The latch mechanisms move linearly along an axis through the sash and into the frame. One latch mechanism extends laterally on one side of the sash and a second latch mechanism extends laterally on the other side of the sash. When it is desired to remove a sash, the sash is moved to an intended vertical release location, and the person removing the sash releases one latch with one hand and the other latch with the other hand. The sash is then tilted or slid out of its normal position and removed from the frame for cleaning. Such a structure has a number of drawbacks. One is that the person removing the window sash needs full availability of both hands to effect release of the latches. Attempts have been made to solve this problem by designing a unitary assembly for concurrently releasing both latches (that is, for simultaneously effecting retraction of the latches). While some measure of success has been achieved with these attempts, other problems still exist. For example, linearly moving latches typically do not provide fully adequate definition of structure for sliding of a sash along an intended track and adequate resistance to pressures which might tend to dislodge a sash from the window frame. One reason for the inadequate resistance to dislodgement is the relatively small cross-section of a latch mechanism extending from the sash.




It is to these dictates and shortcomings of the prior art that the present invention is directed. It is a position maintenance mechanism which addresses these dictates and problems and provides solutions which make the invention a significant over prior art apparatuses.




SUMMARY OF THE INVENTION




The present invention is apparatus which functions to maintain a sliding window sash at an intended position along an axis which is generally perpendicular to a plane defined by a frame within which the sash slides. The frame has an inwardly facing surface which, when the sash is in an intended position at which it slides within the frame, is opposite an outwardly facing surface of the sash. The apparatus in order to maintain the sash at such an intended position includes means to define an elongated trough formed in the inwardly facing surface of the frame. The trough extends generally parallel to the plane defined by the frame and generally in the direction of intended sliding of the sash. The apparatus further includes a blade which defines a plane and means to mount the blade within a cavity in the sash. The blade is mounted and oriented with the plane defined thereby generally parallel to the plane defined by the frame. The blade is disposed within the sash for pivotal movement between a first position and a second position. In the first position of the blade, it is retracted within the outwardly facing surface of the sash and does not extend outwardly beyond the surface of the sash. In its second position, the blade is extended beyond the outwardly facing surface of the sash and into the trough. Means are provided to normally bias the blade to the second position thereof, and means are provided to allow selective retraction of the blade to its first position.




It is intended that the blade, when it is in its second position received within the trough, will be extended fully into the trough to engage a bottom thereof. In a preferred embodiment, the bottom of the trough has a slot formed therein. The location of the slot along the bottom of the trough is such that, when the sash is in a closed position, the blade is at a position coextensive with the slot and extends into the slot. The pivotal disposition of the blade wherein it is extended into and through the slot in the bottom of the trough is defined as a third position of the blade.




In the preferred embodiment, the blade includes an edge which is angled such that, as the sash is moved from a closed position to an open position, the angled edge engages an end of the slot and ramps the blade up and out of the slot. Such action facilitates retraction of the blade from its third position to its second position.




The blade is disposed for pivoting about an axis which is generally perpendicular to the plane defined by the window frame. It is envisioned that a coil spring would be employed to bias the blade about such an axis outwardly through, and away from, the outwardly facing surface of the sash to its second and third positions.




The preferred embodiment contemplates employment of a linearly moving actuator to effect retraction of the blade within the outwardly facing surface of the sash. Such an actuator would be operatively connected to the blade to overcome the biasing of the blade to its second and third positions, and would effect rotation of the blade in a direction opposite that in which the coil spring biases the blade.




A preferred embodiment of the invention includes a wire yolk which is attached to the blade and a length of cord which is attached to the yolk. The cord extends away from the yolk and is attached to a driver for drawing the length of cord inwardly with respect to the outwardly facing surface of the sash to effect rotation of the blade against the biasing means.




It is envisioned that an end plate assembly would be provided for cooperation with the sash, the end plate assembly including a face plate mounted generally flush with the outwardly facing surf ace. The end plate assembly would include a pair of generally parallel tabs extending inwardly from the face plate. The tabs, it is intended, would have oppositely facing surfaces, each of these surfaces mounting a stub axle which is substantially coaxial with a stub axle on the facing surface of the other tab. The two-stub axles would extend toward each other so as to be received within an aperture in the blade, the aperture sized and shaped to receive the stub axles.




Each of opposite sides of the blade defines a ramp surface. When the blade is inserted between distal ends of the stub axles, the ramp surfaces increasingly urge the distal ends of the stub axles apart until the distal ends become registered with the aperture. They then snap into the aperture to effect mounting of the blade.




In practice, a sash configured in accordance with the invention would very likely employ means defining an elongated trough in each of oppositely facing inward surfaces of the frame. Each of said troughs would extend generally parallel to the plane defined by the frame and generally in a direction of intended sliding of the sash. Each of such troughs would be intended to receive one of a pair of blades which define a generally common plane. Each of the pair of blades (see, for example,

FIG. 8

) which define a generally common plane. Each of the pair of blades would be mounted within a corresponding cavity in the sash and oriented with the plane defined by the blades generally parallel to the plane defined by the frame. As in the case of the structure previously described, each blade would be disposed for pivotal movement between a first position, wherein the blade is retracted within a corresponding outwardly facing surface of the sash, and a second position, wherein each of the blades is extended into a corresponding trough in an inwardly facing surface of the frame which is opposite the outwardly facing surface of the sash within which the cavity in which the blade is mounted is formed. The blades would normally be biased to their second positions in engagement with the bottom of the troughs, and means for selectively retracting the blades to their first positions would be provided.




With the dual blade embodiment, means would be provided to effect retraction of the blades from their second positions to their first positions simultaneously. The invention envisions a common member for effecting concurrent retraction of the blades.











The present invention is thus improved apparatus for mounting and maintaining a sash within a window frame. More specific features and advantages obtained in view of those features will become apparent with reference to the accompanying drawing figures, the DETAILED DESCRIPTION OF THE INVENTION, and appended claims.




BRIEF DESCRIPTION OF THE DRAWINGS





FIG. 1

is a perspective, exploded view of apparatus in accordance with the present invention, window sashes being shown in phantom, and some portions of the structure being broken away;





FIG. 2

is a side elevational view of a maintaining blade as mounted within an end plate assembly;





FIG. 3

is a top plan view of the end plate assembly without a blade and biasing spring mounted therewithin;





FIG. 4

is a first end view of the face plate assembly of

FIG. 3

;





FIG. 5

is a second end view of the face plate assembly of

FIG. 3

;





FIGS. 6 and 7

are bottom section views illustrating the mounting of a blade in an end plate assembly; and





FIG. 8

is an elevational view of a double hung window system.











DETAILED DESCRIPTION OF THE INVENTION




Referring now to the drawings, wherein like reference numerals denote like elements throughout the several views,

FIG. 1

is an exploded view illustrating dual sashes


10


,


12


of a double hung window and a blade mechanism


14


, which is intended to be recessed within a cavity


16


in the inner sash


10


. The cavity


16


in the sash


10


is overlain, on a side of the sash, by a face plate


18


mounted generally flush with the outwardly facing side surface


20


of the sash


10


. The face plate


18


is part of an end plate assembly


22


which includes, additionally, a pair of generally parallel tabs


24


,


24


′ which extend inwardly from the face plate


18


into the cavity


16


. The end plate assembly


22


also includes a base


26


which functions for an intended purpose as will be discussed hereinafter.




The figures illustrate a blade member


14


which is pivotally mounted for rotation about an axis generally transverse to a plane defined by the window sash


10


.

FIGS. 2-7

illustrate the specific structure of the end plate assembly


22


and its cooperation in mounting the blade


14


for rotation.





FIG. 1

illustrates a coil spring


28


which is shown as being connectable, at one end thereof, to a hook member


30


of the blade


14


. The other end of the coil spring


28


is connectable to the base


26


of the end plate assembly


22


. The coil spring


28


, thereby, biases the blade


14


for rotation, in a direction as seen in

FIG. 1

, in a clockwise direction.




A yoke member


32


is attached to the blade


14


to effect selective overcoming of the bias of the coil spring


28


in order to retract the blade


14


for a purpose discussed hereinafter. The yoke member is illustrated as being constructed of a wire stock formed into a bail, opposite ends of which are passed through an aperture


34


provided in the blade


14


. The bail


32


thereby has an end, proximate the blade


14


, which serves to apply force to the blade


14


in a direction, as viewed in

FIG. 1

, counter clockwise so as to overcome the bias of the coil spring


28


. The wire from which the bail


32


is formed is provided with a narrow neck.


36


at an end remote from blade


14


. The neck


36


defines a channel


38


which extends away from the blade


14


, when the bail


32


is connected to the blade


14


, to facilitate connection of an actuator mechanism (not shown). A remote end of the actuator is illustrated in

FIG. 1. A

segment of flexible filament


40


is shown as extending through the narrowed channel


38


formed in the neck


36


, an end of the filament


40


having a sleeve


42


crimped onto the filament


40


. Typically, the sleeve


42


would have a diameter smaller than an expanded channel


44


formed within the bail


32


so that the filament


40


end, with the sleeve


42


crimped thereon, could be slid through the expanded channel


44


and then withdrawn into the narrowed channel


38


which would have a width smaller than the diameter of the sleeve


42


.




The overall actuator structure could be constructed in any manner desirable. The actuator would permit volitional rotation of the blade


14


in the counter clockwise direction, as viewed in FIG.


1


. With the embodiment illustrated, it would include means for drawing the filament


40


which in turn would draw the yoke


32


to effect the counter clockwise rotation. It will be understood that any appropriate actuator means, however, could suffice.





FIG. 1

also illustrates a portion of a balance tube


46


which defines an elongated trough or track


48


in an inwardly facing surface


50


of the window frame


52


. In double hung window applications, the balance tube


46


employs mechanisms which function to deter undesirable, unintended slamming of a sash where injury could result.




The balance tube


46


, in the case of the present invention, includes, defined therein, an elongated trough


48


which faces inwardly. The trough


48


extends generally parallel to a plane defined by the window frame


52


. The trough


48


runs generally in a direction of intended sliding of the sash


10


.





FIG. 1

illustrates a slot


54


formed in the balance tube


46


at the bottom of the trough


48


. This slot


54


is formed at a location such that, when the window sash mechanisms are in their closed positions, a corresponding slot


56


in the end plate assembly face plate


18


, through which the blade member


14


can extend, is registered with the slot


54


formed in the balance tube trough


48


.




In order to ensure that the slot


56


in the face plate


18


is maintained in the desired position relative to the inner sash


10


, it is secured at a location on the side stile overlying the cavity


16


. Such affixation is typically effected using wood screws


58


as shown.





FIG. 2

illustrates the blade


14


mounted in place between the tabs


24


,


24


′ extending inwardly into the cavity


16


from the face plate


18


. That figure shows a second position of the blade


14


in solid line and first and third positions of the blade


14


in phantom line.




The first position of the blade


14


is such that the blade


14


is retracted within an outwardly facing surface


20


of the sash


10


(that is, recessed within the cavity


16


). The third position of the blade


14


is one wherein the blade


14


not only extends into the trough


48


engaging the bottom thereof, as it does in its second position, but wherein the blade


14


extends fully to the bottom of the trough


48


and into and through the slot


54


formed in the bottom of the trough


48


.




As will be able to be seen, when the blade member


14


is in its second position, it will ride in the trough


48


and facilitate raising and lowering of the window sash


10


. It serves as a track rider which rides on the track defined by trough


48


, and the thickness of the blade member


14


can be made so that there is a minimum, if any, wobble of the sash


10


relative to the window frame


52


of which balance tube


46


is a part. Because of the biasing of the blade


14


to the second position by the coil spring


28


, the blade


14


will tend to remain received within the trough


48


as long as action is not taken to operate the actuator in order to overcome the bias of the spring


28


and cause rotation of the blade


14


to its first position.




The bias of the spring


28


is sufficiently strong such that, when the sash


10


is moved to its closed position with the slots in the face plate


56


and bottom of the trough


54


registered, the blade


14


will extend into the slot in the trough


54


. This will effect an even more positive preclusion of movement of the sash


10


in a direction perpendicular to a plane defined by the window frame


52


. The sash


10


will, thereby, be even more securely disposed to deter unwanted removal.




As the sash


10


is moved along the track, a ramped edge


60


of the blade


14


will ride over a correspondingly ramped surface


62


of an end of the slot


54


in the bottom of the trough


48


. This will serve to allow the blade


14


to ride up and out of the slot


54


in the trough


48


. Nevertheless, because of the coil spring biasing means


28


, the tip


64


of the blade


14


will still engage the bottom of the trough


48


.




As will be able to be seen then, unless some positive action is taken to move the blade


14


in a rotational manner to its first position, the blade


14


will be maintained in either its second or third positions. When it is desired, however, to remove the sash


10


from the window, operation of the actuator means can be initiated to overcome the bias of the coil spring


28


and rotate the blade


14


to its first position. With the blade


14


in this position, there will be no obstruction to rotation of the sash


10


out of its location between the frame


52


or, if desired, removal of the sash


10


.





FIGS. 3-5

illustrate the end plate assembly


22


in different views, and

FIGS. 6 and 7

illustrate the assembly


22


in combination with the blade


14


.

FIG. 6

shows the blade in the process of being inserted into position pivotally mounted to tabs


24


,


24


′ of end plate assembly


22


.

FIG. 7

shows the blade


14


having been fully inserted between tabs


24


,


24


′ with a stub axle


66


,


66


′ carried by each of tabs


24


,


24


′ snapped into an aperture


68


formed in blade


14


. Aperture


68


defines the axis of rotation of blade


14


.




Referring now to

FIGS. 3-5

, end plate assembly


22


includes face plate


18


and tabs


24


,


24


′ extending rearwardly therefrom. As previously discussed, tabs


24


,


24


′ are spaced from each other, and each tab


24


,


24


′ has a stub axle


66


,


66


′ extending inwardly from its corresponding tab


24


,


24


′ toward the other stub axle. The stub axles


66


,


66


′, together, define a shaft about which the blade


14


rotates.




Tabs


24


,


24


′ are manufactured from a resilient material so that they can be deflected outwardly, as indicated by arrows


70


in

FIG. 6

, to allow introduction of blade


14


therebetween. Blade


14


includes a dual-ramped portion knife edge which serves to urge tabs


24


,


24


′ apart as the ramped surfaces of the knife edge engage inwardly-facing surfaces of the stub axles


66


,


66


′. Tabs


24


,


24


′ will continue to be urged apart as the knife edge is pushed in the direction of arrow


72


as seen in FIG.


6


. Eventually, blade


14


achieves a position as seen in

FIG. 7

, and tabs


24


,


24


′ snap inwardly to position stub axles


66


,


66


′ within pivot aperture


68


in blade


14


. Blade


14


is then mounted for rotation.





FIGS. 1 and 2

illustrate a base


26


, as previously discussed, of end plate assembly


22


. Base


26


includes a rectangular cross-section shaft which is generally parallel to face plate


18


. This rectangular cross-section shaft


74


serves as a point of affixation of one end of coil spring


28


. The other end of coil spring


28


is extended upwardly, through an expanded portion of yoke/bail


32


, and is attached to blade


14


at hook member


30


. As can best be seen in

FIG. 2

, this will effect a clockwise bias on blade


14


in contra-rotation to the force applied to blade


14


by filament


40


extending from the actuator.





FIGS. 1 and 2

illustrate end plate assembly


22


as being mounted to inner sash


10


with face plate


18


overlying cavity


16


. Affixation of end plate assembly


22


to sash


10


is shown as being accomplished with a pair of Phillips-head screws


58


. Screws


58


are inserted through aperture


78


in face plate


18


and into sash


10


.




It will be understood that this disclosure, in many respects, is only illustrative. Changes may be made in details, particularly in matters of shape, size, material, and arrangement of parts without exceeding the scope of the invention. Accordingly, the scope of the invention is as defined in the language of the appended claims.



Claims
  • 1. A window apparatus comprising:at least one trough associated with a frame; first and second planar blades mounted in opposite sides of a window sash, the planar blades slidably disposed within the trough and guides the sash as it moves within the frame, the planar blades rotatable around an axis from a first position to a second position, in the first position the blades are disposed within the trough, in the second position the blades are retracted within the sash and releases the sash from the frame; the blades are biased toward the frame in the first position; and at least one actuator coupled with the planar blades, the at least one actuator disposed in a top portion of the sash.
  • 2. The window as recited in claim 1, further comprising a spring assembly adapted to bias the blades toward the frame when the blades are in the first position.
  • 3. The window apparatus as recited in claim 1, wherein the planar blades include blade includes a hook configured to couple with a bias member.
  • 4. The window apparatus as recited in claim 1, further comprising a yoke member coupled with the planar blade, the yoke member includes an expanded channel and a narrow channel, and the narrow channel is more narrow than the expanded channel.
  • 5. The window apparatus as recited in claim 1, further comprising an end plate assembly having tabs, and each tab includes a stub axle, and the planar blades are rotatably coupled with each stub axle.
  • 6. The window apparatus as recited in claim 5, wherein each of the planar blades include an aperture therein, and the aperture of the planar blades receives each stub axle therein.
  • 7. The window apparatus as recited in claim 1, further comprising a cord coupled with the planar blades.
  • 8. The window apparatus as recited in claim 1, further comprising a linearly moving actuator operatively connected to the planar blades, the actuator adapted to move the blade from the first position to the second position.
  • 9. A window apparatus comprising:at least one trough associated with a frame; at least one planar blade mounted in a window sash, the planar blade slidably disposed within the trough and guides the sash as it moves within the frame, the planar blade rotatable around an axis from a first position to a second position, in the first position the blade is disposed within the trough, in the second position the blade retracted within the sash and releases the sash from the frame; the blade is biased toward the frame in the first position; and the frame includes a bottom surface having a slot formed therein, the planar blade rotatable from the second position to a third position, in the third position the planar blade disposed within the slot.
  • 10. The window apparatus as recited in claim 9, wherein the planar blade has a blade ramped edge, and the slot has a slot ramped edge, and the blade ramped edge rides on the slot ramped edge.
  • 11. The window apparatus as recited in claim 9, further comprising a linearly moving actuator operatively connected to the planar blade, the actuator adapted to move the blade from the first position to the second position.
  • 12. A window apparatus comprising:at least one trough associated with a frame; at least one planar blade mounted in a window sash, the planar blade slidably disposed within the trough and guides the sash as it moves within the frame, the planar blade rotatable around an axis from a first position to a second position, in the first position the blade is disposed within the trough, in the second position the blade retracted within the sash and releases the sash from the frame; the blade is biased toward the frame in the first position; and a flexible filament coupled with the planar blade, the filament including a sleeve crimped thereon.
  • 13. The window apparatus as recited in claim 12, further comprising a yoke member coupled with the planar blade, the yoke member includes an expanded channel and a narrow channel, and the sleeve inserted into the expanded channel and withdrawn into the narrowed channel.
  • 14. A window apparatus comprising:at least one trough associated with a frame; a pair of planar blades mounted in a window sash, the planar blades, the planar blades are rotatable around an axis from a first position to a second position, in the first position the blades are disposed out of the sash and guide the sash within the frame, in the second position the blades are retracted within the sash and releases the sash from the frame; a spring assembly adapted to bias the blades toward the frame; and a flexible filament coupled with each of the blades, the flexible filament configured to move the pair of planar blades from the first position to the second position.
  • 15. The window apparatus as recited in claim 14, further comprising a linearly moving actuator operatively connected to the filament.
  • 16. A method comprising:associating troughs with a window frame; mounting two planar blades within opposite sides of a sash; orienting the planar blades within the sash and at least partially within the troughs; biasing the planar blades toward a bottom surface of the troughs; moving the sash relative to the frame and sliding the planar blades within the troughs; and pivoting the planar blades from a first position within the trough to a second position retracted out of the trough with at least one actuator in an upper portion of the sash.
  • 17. The method as recited in claim 16, wherein pivoting the planar blades includes rotating the blades with a linear actuator.
  • 18. The method as recited in claim 17, further comprising coupling a filament with the planar blades and the linear actuator.
  • 19. The method as recited in claim 16, further comprising riding a ramped edge of the planar blades over a ramped surface of a slot within the trough.
  • 20. The method as recited in claim 16, further comprising deflecting a pair of tabs within the sash and disposing the planar blades between the tabs.
  • 21. The method as recited in claim 16, further comprising disposing stub axles within a pivot aperture of the planar blades.
  • 22. A method comprising:associating a trough with a window frame; orienting a planar blade within a sash and at least partially within the trough; biasing the planar blade toward a bottom surface of the trough; moving the sash relative to the frame and sliding the planar blade within the trough; pivoting the planar blade from a first position within the trough to a second position retracted out of the trough; and forming a slot within the trough, and rotating the planar blade to a third position within the slot.
Parent Case Info

This is a continuation of Ser. No. 09/328,085, filed Jun. 8, 1999, now U.S. Pat. No. 6,141,913.

US Referenced Citations (28)
Number Name Date Kind
118512 Butler Aug 1871 A
1457366 Horner Jun 1923 A
2305275 Pyle et al. Dec 1942 A
2561295 Stone Jul 1951 A
2670982 Banham Mar 1954 A
2752185 Coppola Jun 1956 A
2932861 Kunkel Apr 1960 A
2987758 Osten, Sr. Jun 1961 A
3010163 Osten, Sr. Nov 1961 A
3172145 Miller Mar 1965 A
3197819 Trout Aug 1965 A
3233278 Lundgren Feb 1966 A
3248821 Johnson May 1966 A
3429071 Phillips Feb 1969 A
3522675 Metzger Aug 1970 A
3970343 Horn Jul 1976 A
4290231 Blair Sep 1981 A
4525952 Cunningham et al. Jul 1985 A
4955159 Rogers Sep 1990 A
5406749 Goldenberg Apr 1995 A
5572828 Westfall Nov 1996 A
5572839 Kinsey Nov 1996 A
5636475 Nidelkoff Jun 1997 A
5669180 Maier Sep 1997 A
5901499 Delaske et al. May 1999 A
6141913 Wong et al. Nov 2000 A
6330764 Klosterman Dec 2001 B1
20030047948 Polowinczak Mar 2003 A1
Foreign Referenced Citations (1)
Number Date Country
2226357 Jun 1990 GB
Continuations (1)
Number Date Country
Parent 09/328085 Jun 1999 US
Child 09/703533 US