The present disclosure relates generally to insulating glass units and more particularly to a method and apparatus for fabricating a spacer frame for use in making a window.
Insulating glass units (IGUs) are used in windows to reduce heat loss from building interiors during cold weather. IGUs are typically formed by a spacer assembly sandwiched between glass lites. A spacer assembly usually comprises a frame structure extending peripherally about the unit, a sealant material adhered both to the glass lites and the frame structure, and a desiccant for absorbing atmospheric moisture within the unit. The margins or the glass lites are flush with or extend slightly outwardly from the spacer assembly. The sealant extends continuously about the frame structure periphery and its opposite sides so that the space within the IGUs is hermetic.
There have been numerous proposals for constructing IGUs. One type of IGU was constructed from an elongated corrugated sheet metal strip-like frame embedded in a body of hot melt sealant material. Desiccant was also embedded in the sealant. The resulting composite spacer was packaged for transport and storage by coiling it into drum-like containers. When fabricating an IGU the composite spacer was partially uncoiled and cut to length. The spacer was then bent into a rectangular shape and sandwiched between conforming glass lites.
Perhaps the most successful IGU construction has employed tubular, roll formed aluminum or steel frame elements connected at their ends to form a square or rectangular spacer frame. The frame sides and corners were covered with sealant (e.g., a hot melt material) for securing the frame to the glass lites. The sealant provided a barrier between atmospheric air and the IGU interior which blocked entry of atmospheric water vapor. Particulate desiccant deposited inside the tubular frame elements communicated with air trapped in the IGU interior to remove the entrapped airborne water vapor and thus preclude its condensation within the unit. Thus after the water vapor entrapped entrapped in the IGU was removed internal condensation only occurred when the unit failed.
In some cases the sheet metal was roll formed into a continuous tube, with desiccant inserted, and fed to cutting stations where “V” shaped notches were cut in the tube at corner locations. The tube was then cut to length and bent into an appropriate frame shape. The continuous spacer frame, with an appropriate sealant in place, was then assembled in an IGU.
Alternatively, individual roll formed spacer frame tubes were cut to length and “corner keys” were inserted between adjacent frame element ends to form the corners. In some constructions the corner keys were foldable so that the sealant could be extruded onto the frame sides as the frame moved linearly past a sealant extrusion station. The frame was then folded to a rectangular configuration with the sealant in place on the opposite sides. The spacer assembly thus formed was placed between glass lites and the assembly completed.
IGUs have failed because atmospheric water vapor infiltrated the sealant barrier. Infiltration tended to occur at the frame corners because the opposite frame sides were at least partly discontinuous there. For example, frames where the corners were formed by cutting “V” shaped notches at corner locations in a single long tube. The notches enabled bending the tube to form mitered corner joints; but afterwards potential infiltration paths extended along the corner parting lines substantially across the opposite frame faces at each corner.
Likewise in IGUs employing corner keys, potential infiltration paths were formed by the junctures of the keys and frame elements. Furthermore, when such frames were folded into their final forms with sealant applied, the amount of sealant at the flame corners tended to be less than the amount deposited along the frame sides. Reduced sealant at the frame corners tended to cause vapor leakage paths.
In all these proposals the frame elements had to be cut to length in one way or another and, in the case of frames connected together by corner keys, the keys were installed before applying the sealant. These were all manual operations which limited production rates. Accordingly, fabricating IGUs from these frames entailed generating appreciable amounts of scrap and performing inefficient manual operations.
In spacer frame constructions where the roll forming occurred immediately before the spacer assembly was completed, sawing, desiccant filling and frame element end plugging operations had to be performed by hand which greatly slowed production of units.
U.S. Pat. No. 5,361,476 to Leopold discloses a method and apparatus for making IGUs wherein a thin flat strip of sheet material is continuously formed into a channel shaped spacer frame having corner structures and end structures, the spacer thus formed is cut off, sealant and desiccant are applied and the assemblage is bent to form a spacer assembly. U.S. Pat. No. 5,361,476 is incorporated herein by reference in its entirety.
U.S. Pat. No. 7,448,246 illustrates a mechanical crimper having crimping fingers, imposing folds along the spacer frame by mechanically connecting slides, cylinders and the crimping fingers to the spacer frame while the spacer frame is being advanced. Stated another way, the crimping station included a number of slides and cylinders in addition to the crimping fingers that moved with the product by mechanically coupling the cylinders and fingers to the spacer while the material forming the spacer is advanced through the station. When the required number of crimps were complete, an additional cylinder was released from the spacer, allowing the crimper fingers and cylinders to be pulled back to a starting position by a mechanical spring. U.S. Pat. No. 7,448,246 is incorporated herein by reference in its entirety.
One example embodiment of the present disclosure includes an apparatus and method for forming folds about one or more corners in a spacer frame assembly used in the construction of insulating glass unit windows. The apparatus comprises a carriage supporting first and second crimping fingers. The crimping fingers are spaced about a path of travel for the passage of metal strips during operation. The apparatus further comprises a motor coupled to a ball screw assembly, the ball screw assembly advancing and retracting the carriage during operation substantially along a portion of the path of travel. The apparatus additionally comprises an encoder located along the path of travel and upstream of the carriage. The encoder measures a velocity of a metal strip moving along the path of travel. The apparatus also comprises an electrical gearing arrangement for accelerating the carriage along the path of travel. The electrical gearing arrangement includes a controller and a double acting rack assembly, the controller being coupled to the motor, the encoder, and double rack assembly. The double rack assembly simultaneously actuates the fingers at a direction substantially transverse to the path of travel.
One example embodiment of the present disclosure includes a method for forming folds about a corner in a spacer frame assembly used in the construction of insulating glass unit windows. The method comprises sensing a notch utilizing a sensor in communication with a controller. Wherein, the notch is located on a continuously moving metal strip moving along a path of travel through a crimping assembly. The method thriller comprises measuring a velocity of the continuously moving metal strip along the path of travel utilizing an encoder in communication with the controller of the crimping assembly. The method additionally comprises accelerating the crimping assembly, responsive to sensing the notch, from a home position along the path of travel, utilizing an electrical gearing assembly in communication with the controller, the accelerating continuing until crimping fingers of the crimping assembly are even with the notch. Wherein, the crimping fingers are located downstream from the encoder and the sensor. The method also comprises actuating the crimping fingers to form a fold in the continuously moving metal strip at the notch.
One example embodiment of the present disclosure includes an apparatus and method for forming folds about one or more corners in a spacer frame assembly used in the construction of insulating glass unit windows. The apparatus comprises a carriage supporting first and second crimping fingers. The crimping fingers are spaced about a path of travel for the passage of metal strips during operation. The apparatus further comprises a motor coupled to a ball screw assembly, the ball screw assembly advancing and retracting the carriage during operation substantially along a portion of the path of travel. The apparatus additionally comprises an encoder located along the path of travel and upstream of the carriage and a sensor located along the path of travel between the encoder and the carriage. Wherein, the encoder measures a velocity of a metal strip moving along the path of travel and the sensor forms a light curtain transverse to the path of travel to detect a notch in the metal strip. The apparatus also comprises an electrical gearing arrangement for accelerating the carriage along the path of travel. The electrical gearing arrangement includes a controller and a double acting rack assembly, the controller being coupled to the motor, the encoder, the sensor, and double rack assembly. The double rack assembly simultaneously actuates the fingers at a direction substantially transverse to the path of travel.
The foregoing and other features and advantages of the present disclosure will become apparent to one skilled in the art to which the present disclosure relates upon consideration of the following description of the invention with reference to the accompanying drawings, wherein like reference numerals, unless otherwise described refer to like parts throughout the drawings and in which:
Skilled artisans will appreciate that elements in the figures are illustrated for simplicity and clarity and have not necessarily been drawn to scale. For example, the dimensions of some of the elements in the figures may be exaggerated relative to other elements to help to improve understanding of embodiments of the present disclosure.
The apparatus and method components have been represented where appropriate by conventional symbols in the drawings, showing only those specific details that are pertinent to understanding the embodiments of the present disclosure so as not to obscure the disclosure with details that will be readily apparent to those of ordinary skill in the art having the benefit of the description herein.
Referring now to the figures wherein like numbered features shown therein refer to like elements throughout unless otherwise noted. The present disclosure relates generally to insulating glass units and more particularly to a method and apparatus for fabricating a spacer frame for use in making a window.
The drawing Figures and specification disclose a method and apparatus for producing elongated spacer frames used in making insulating glass units. The method and apparatus are embodied in a production line which forms material into spacer frames for completing the construction of insulating glass units. While an exemplary system fabricates metal frames, the invention can be used with plastic frame material extruded into elongated sections having corner notches.
An insulating glass unit (IGU) 10 is illustrated in
In the illustrated example embodiment of
The sealant body 18 both structurally adheres the lites 14 to the spacer assembly 12 and hermetically closes the space 20 against infiltration of airborne water vapor from the atmosphere surrounding the unit 10. One suitable sealant is formed from a “hot melt” material which is attached to the frame sides and outer periphery to form a U-shaped cross section.
In the example illustrated embodiment of
As illustrated in
The frame 16 is initially formed as a continuous straight channel constructed from a thin ribbon of stainless steel material (e.g., 304 stainless steel having a thickness of 0.006-0.010 inches), as illustrated in
At the same time the notches 360 are formed, the weakened zones associated with the central line of weakness 52 are formed. These weakened zones are cut into the strip, but not all the way through. When this strip is roll formed, the weakened zones can spring back and have an outward tendency.
The connecting structure 34 secures the opposite frame ends 62, 64 together when the frame structure 16 has been bent to its final configuration. The illustrated connecting structure 34 of
The Production Line 100
As indicated previously the spacer assemblies 12 are elongated window components that may be fabricated by using the method and apparatus of the present invention. Elongated window components are formed at high rates of production. The operation by which elongated window components are fashioned is schematically illustrated in
The line 100 comprises a stock supply station 102, a first forming station 104, a transfer mechanism 105, a second forming station 110, third and fourth forming stations 114, 116, a conveyor 113, and a scrap removal apparatus 111, respectively, where partially formed frame members 30a-30d are separated from the leading end of the stock and frame corner locations are deformed preparatory to being folded into their final configurations, a desiccant application station 119 where desiccant is applied to an interior region of the spacer frame member, and an extrusion station 120 where sealant is applied to the yet to be folded spacer frame member. A scheduler/motion controller unit 122 interacts with the stations and loop feed sensors to govern a spacer stock size, a spacer assembly size, stock feeding speeds in the line, and other parameters involved in production. A preferred controller unit 122 is commercially available from Delta Tau, 21314 Lassen St. Chatsworth, Calif. 91311 as part number UMAC.
The Roll Former 210
Referring to
The support frame structure 212 comprises a base 213 fixed to the floor and first and second roll supporting frame assemblies mounted atop the frame structure. The base 213 positions the frame assembly 224 in line with the stock path of travel P immediately adjacent a transfer mechanism, such that a fixed stock side location of a stamping station that cuts notches at corner locations is aligned with a fixed stock side location of the roll forming station 210.
Referring to
Each mill roll pair 237 extends between a respective pair of stanchions 236 so that the stanchions provide support against relative mill roll movement in the direction of extent of the path of travel P as well as securing the rolls together for assuring adequate engagement pressure between rolls and the stock passing through roll nips. The upper support bar 238 carries three spaced apart linear bearing assemblies 240 on its lower side. Each linear bearing 240 is aligned with and engages a respective trackway so that the upper support bar 238 may move laterally toward and away from the stock path of travel P on the trackways.
Each roll assembly 214 is formed by two roll pairs 237 aligned with each other on the path of stock travel to define a single “pass” of the rolling mill. That is to say, the rolls of each of the two roll pairs 237 have parallel axes disposed in a common vertical plane and with the upper rolls of each pair and the lower rolls of each pair being coaxial. The rolls of each of the roll pairs 237 project laterally towards the path of stock travel P from their respective support units 230, 232. The projecting roll pair ends are adjacent each other with each pair of rolls constructed to perform the same operation on opposite edges of the stock. The roll nip of each roll pair 237 is spaced laterally away from the center line of the travel path. The roll pairs 237 of each roll assembly 214 are thus laterally separated along the path of travel.
The upper support bar 238 carries a nut and screw three adjuster 250 associated with each upper mill roll for adjustably changing the engagement pressure exerted on the stock at the roll nip. The adjuster 250 comprises a screw 242 threaded into the upper support bar 238 and lock nuts for locking the screw in adjusted positions. The adjusting screw is thus rotated to positively adjust the upper roll position relative to the lower roll. The lower support beam 234 fixedly supports the lower mill roll of each of the roll pairs 237. The adjusters 250 enable the vertically adjustable mill roll pairs 237 to be moved towards or away from the fixed mill rolls to increase or decrease the force with which the roll assemblies engage the stock passing between them.
The drive motor 220 is preferably an electric servomotor driven from the controller unit 122. As such the motor speed can be continuously varied through a wide range of speeds without appreciable torque variations.
Whenever the motor 220 is driven, the rolls of the roll pairs 237 of each roll assembly 214 are positively driven in unison at precisely the same angular velocity. Roll sprockets of successive roll pairs 237 are identical and there is no slip in a chain attaching the rolls of the roll pairs 237 so that the angular velocity of each roll in the rolling mill is the same as that of each of the others. The slight difference in roll diameter provides for the differences in roll surface speed referred to above for tensioning the stock without distorting it.
In the exemplary embodiment, the distance between the units 230, 232 is manually adjusted to adapt the roll forming station 210 to the width of sheet stock to be presented to roll forming station. In the illustrated example embodiment of
Crimping Assembly 310
As illustrated in
As illustrated in the example embodiment of
The crimping assembly 310 further comprises a motor 336 coupled to the ball screw 334. An example of a suitable motor 336 is sold by B& R of Austria under part number 8LV A13.B103D000-0. The motor 336 is attached to the weldment 328 with a mounting block 338.
Nested atop the carriage 314 is a crimping arrangement 340. The crimping arrangement 340 comprises first and second crimping fingers 342, 344, respectively that are directly opposing each other on opposite sides of the u-shaped strip 312. The fingers 342, 344 simultaneously collapse on the strip 312 when actuated, the actuation controlled by double acting cylinder rack 346.
In the illustrated example embodiment of
In the illustrated example embodiment of
The sensors 354 form a light curtain 356 (see
In one example embodiment, the strip 312 travels at one hundred (100 ft/min) feet per minute and the carriage 314 is accelerated at 1000 inches per second squared during which time the crimping fingers 342, 344 are actuated to engage the strip 312 at multiple locations (for example at least four times for a four corner square spacer frame) over the strip 312 at the designated lines of weakness 52. The electrical gearing and crimping assembly 310 allows a single strip 312 to complete one cycle with four folds 391 in only 0.300 seconds, as illustrated in
One suitable example of an electrical gearing drive 350 is made by B&R of Austria under part number 80VD100PS.C00X.01. One suitable example encoder 336 is made by BEI Technologies located in Thousand Oaks, Calif. under part number HD2F2-F0CDS6-1000. One suitable sensor 354 is made by Keyence Corporation of America located in Itasca, Ill. under part number FUE-11. The above specifications of the commercial components are incorporated herein by reference.
Illustrated in
Illustrated in
At 522, the process 500 uses electrical gearing in combination with the drive 350, plc 122, motor 336, ball screw 334, and encoder 352 to measure the velocity (relatively constant) of the strip 312 moving through the roll former 210 to the crimping assembly 310. At 524, the carriage 114 of the crimping assembly 310 is accelerated in the direction of the path of travel from the stationary or home position to reach the velocity of the strip 312 at the first crimping point of the strip, so that the crimping points 380 of fingers 342, 344 engage simultaneously the first line of weakness 52 at a first corner structure 32a.
At 526, the carriage 314 of the crimping assembly 310 using the electrical gearing is then decelerated so that the strip 312 advances through the crimping assembly at a velocity greater than the velocity of the carriage along the path of travel P. Once the second line of weakness 52 is sensed, the carriage 314 is accelerated in the direction of the path of travel P to reach the velocity of the strip 312 to align the points 380 of the fingers 342, 344, with the second line of weakness 52. The fingers 342, 344 and more specifically points 380 engage the second line of weakness at a second corner structure 32b. In an example embodiment, the carriage 314 returns to the home position after each actuation of the fingers 342, 344. In another example embodiment, the carriage 314 returns to the home position after each four actuation of the fingers 342, 344. The acceleration and deceleration steps 524, 526 continue for the desired number of bends or corner structures 32c, 32d . . . 32n (e.g., where n is typically 4 for a four sided spacer frame) until all the desired folds on the strip 12 that will form the desired number of corner structures 32 are formed. In an example embodiment, depending on a length of the strip 312, a desired distance between corner structures, etc., the carriage 314 returns to the home position and then resume steps 524, 526, until the desired number of folds on the strip are formed. At 528, the process continues by returning the carriage 314 to the home or stationary position in which the carriage 314 started at 510 and as illustrated in
In one example embodiment, the notch 360 is also the first corner structure 32a. In an alternative example embodiment, the notch is a different configuration from that of the corner structure that is detectable by the window 356 of the sensor 354. It should be appreciated that the electrical gearing using the combination of the sensors 354 and the known distance of the folds or corner structures allows the fingers 342, 344 to accelerate and decelerate at a rate that provides for precise contact along the lines of weakness 52 throughout the strip 312.
During operation, the crimping assembly 310 watches for the notch 360 located at a first end of the strip 312, which can be the front portion of the strip as it passes though the sensors 354 or one or multiple parts of the first corner of the strip 312, for A, B, C, D, E, F, G, and H as illustrated in
Referring now to
During operation, as illustrated in
When the notch 360 or first corner 32a is detected, the carriage 414 is accelerated by the turning of the motor 436 and ball screw 434 in which it is coupled in the direction of the path of travel P until it reaches the first line of weakness 52. At which time, the velocity of the strip 412 is maintained by the carriage 414 as the fingers 442, 444 engage the u-shaped strip 412 in the direction X transverse to the path of travel, forming the first fold 391a simultaneously on both sides of the strip, as illustrated in
Advantageously, the crimping assembly 310, 410 does not have any mechanical contact with the metal strip 312, 412 except in the location of the folds 391 by points 380. Thus, damage and warranty repairs on spacer frames are minimized when compared to conventional mechanical crimping assemblies in which the carriage mechanically contacts and is pulled by the strip as is travels through the production line. In addition, the double acting cylinder rack 346, 446 guarantees that the points 380 of the fingers 342, 344. 442, 444 contact the strip 312, 412 to form folds 391 simultaneously, resulting in less defects such as defects that can occur in misaligned folds with individually firing independent cylinders on opposite sides of the metal spacer strip found in conventional systems. Finally, the no-touch drive of the crimping assembly 310, 410 reduces equipment wear experienced in conventional systems.
In an alternative example embodiment, the crimping assembly 310, 410 after applying each fold 391 returns to the home position. Once back to the home position, the sensor 354, 454 detects the next notch 360 or line of weakness 52, accelerating the crimper 310, 410 and more particularly the carriage 314, 414 and actuating the fingers 342, 344. 442, 444 to form the folds 391 on the next line of weakness. This return to home position as illustrated in
In the foregoing specification, specific embodiments have been described. However, one of ordinary skill in the art appreciates that various modifications and changes can be made without departing from the scope of the disclosure as set forth in the claims below. Accordingly, the specification and figures are to be regarded in an illustrative rather than a restrictive sense, and all such modifications are intended to be included within the scope of present teachings.
The benefits, advantages, solutions to problems, and any element(s) that may cause any benefit, advantage, or solution to occur or become more pronounced are not to be construed as a critical, required, or essential features or elements of any or all the claims. The disclosure is defined solely by the appended claims including any amendments made during the pendency of this application and all equivalents of those claims as issued.
Moreover in this document, relational terms such as first and second, top and bottom, and the like may be used solely to distinguish one entity or action from another entity or action without necessarily requiring or implying any actual such relationship or order between such entities or actions. The terms “comprises,” “comprising,” “has”, “having,” “includes”, “including,” “contains”, “containing” or any other variation thereof, are intended to cover a non-exclusive inclusion, such that a process, method, article, or apparatus that comprises, has, includes, contains as list of elements does not include only those elements but may include other elements not expressly listed or inherent to such process, method, article, or apparatus. An element proceeded by “comprises . . . a”, “has . . . a”, “includes . . . a”, “contains . . . a” does not, without more constraints, preclude the existence of additional identical elements in the process, method, article, or apparatus that comprises, has, includes, contains the element. The terms “a” and “an” are defined as one or more unless explicitly stated otherwise herein. The terms “substantially”, “essentially”, “approximately”, “about” or any other version thereof, are defined as being close to as understood by one of ordinary skill in the art. In one non-limiting embodiment the terms are defined to be within for example 10%, in another possible embodiment within 5%, in another possible embodiment within 1%, and in another possible embodiment within 0.5%. The term “coupled” as used herein is defined as connected or in contact either temporarily or permanently, although not necessarily directly and not necessarily mechanically. A device or structure that is “configured” in a certain way is configured in at least that way, but may also be configured in ways that are not listed.
To the extent that the materials for any of the foregoing embodiments or components thereof are not specified, it is to be appreciated that suitable materials would be known by one of ordinary skill in the art for the intended purposes.
The Abstract of the Disclosure is provided to allow the reader to quickly ascertain the nature of the technical disclosure. It is submitted with the understanding that it will not be used to interpret or limit the scope or meaning of the claims. In addition, in the foregoing Detailed Description, it can be seen that various features are grouped together in various embodiments for the purpose of streamlining the disclosure. This method of disclosure is not to be interpreted as reflecting an intention that the claimed embodiments require more features than are expressly recited in each claim. Rather, as the following claims reflect, inventive subject matter lies in less than all features of a single disclosed embodiment. Thus the following claims are hereby incorporated into the Detailed Description, with each claim standing on its own as a separately claimed subject matter.
The following application claims priority under 35 U.S.C. § 119 (e) to U.S. Provisional Patent Application Ser. No. 62/218,781 filed Sep. 15, 2015 entitled WINDOW SPACER FRAME CRIMPING ASSEMBLY. The above-identified application is incorporated herein by reference in its entirety for all purposes.
Number | Name | Date | Kind |
---|---|---|---|
5295292 | Leopold | Mar 1994 | A |
9279283 | Briese | Mar 2016 | B2 |
9428953 | Briese | Aug 2016 | B2 |
9534439 | Briese | Jan 2017 | B2 |
9765564 | Briese | Sep 2017 | B2 |
20060075869 | Calcel et al. | Apr 2006 | A1 |
20070261247 | Briese et al. | Nov 2007 | A1 |
Number | Date | Country |
---|---|---|
0722812 | Jul 1996 | EP |
Entry |
---|
International Search Report and Written Opinion of International Patent Application No. PCT/US2016/051931, dated Nov. 18, 2016 (7 pages). |
Number | Date | Country | |
---|---|---|---|
20170074031 A1 | Mar 2017 | US |
Number | Date | Country | |
---|---|---|---|
62218781 | Sep 2015 | US |