Not Applicable
Not Applicable
Not Applicable
The present invention relates to solar cells, as for example multijunction solar cells formed of III-V semiconductor alloys. The present invention is related to the invention set forth in provisional patent application Ser. No. 61/446,704 filed Feb. 25, 2011 and incorporates by reference the entirety of what is set forth in that application.
Solar cells typically utilize a window layer on top of an emitter to passivate the emitter surface and reflect back minority carriers to inhibit surface recombination that reduces efficiency. A window layer is part of the active semiconductor structure but may also constitute part or all of an antireflection coating. A conventional dielectric antireflection coating is understood not to be a window layer, although it may be optically coupled to or integrated into a window layer. (Additional transparent coverings may be provided for environmental protection.)
Multijunction solar cells formed primarily of III-V semiconductor alloys are known to produce solar cell efficiencies exceeding efficiencies of other types of photovoltaic materials. Such alloys are combinations of elements drawn from Columns III and V of the standard Periodic Table, identified hereinafter by their standard chemical symbols, names and abbreviations. (Those of skill in the art can identify their class of semiconductor properties by class without specific reference to their column.) The high efficiencies of these solar cells make them attractive for terrestrial concentrating photovoltaic systems and systems designed to operate in outer space. Multijunction solar cells with efficiencies above 42% under concentrations equivalent to several hundred suns have been achieved.
Historically, the highest efficiency solar cells have consisted of a monolithic stack of three subcells, grown epitaxially on germanium (Ge) or gallium arsenide (GaAs) substrates. The top subcell has active layers made of (Al)GaInP, the middle one of (In)GaAs, and the bottom subcell includes the Ge substrate or consists of a III-V material. The foregoing nomenclature for a III-V alloy, wherein a constituent element is shown parenthetically, such as Al in (Al)InGaP denotes a condition of variability in which that particular element can be zero.
Referring to
As illustrated in
When speaking about the stacking order of the subcells from top to bottom, the top subcell is defined to be the subcell that is closest to the light source during operation of the solar cell, and the bottom subcell is furthest from the light source. Relative terms like “above,” “below,” “upper,” and “lower” also refer to position in the stack with respect to the light source. The order in which the subcells were grown is not relevant to this definition.
As discussed above, each conventional subcell as discussed above typically comprises a window layer, emitter, base and back surface field (BSF), and may or may not include other layers. Those skilled in the art will also recognize that subcells may also be constructed without all of the foregoing layers. The window layer and the BSF serve to reflect minority carriers from the surfaces of the emitter and base layers, respectively, and are well known to be critical to high efficiency carrier collection. The materials and doping levels used for the window layer are chosen such that the band alignment produces a large energy barrier to the minority carriers with a minimal barrier for majority carriers. This allows majority carriers to diffuse through the window layer, while minority carriers are reflected. It is important that the interface between the window layer and the emitter be very high quality, so as to minimize the minority carrier surface recombination velocity. The window layer also has a higher band gap than the adjacent emitter, in order to minimize its absorption of incident light. In subcells other than the top subcell, the band gap of the window layer may be high enough that it absorbs a negligible fraction of the light reaching that subcell. In that case, the majority of photons with energies above its band gap would have been absorbed by the upper subcell(s).
For the top subcell, however, the window layer can be a major source of current loss. The top subcell window layer absorbs a fraction of the incident light in the solar spectrum that is above its band gap and generates electron-hole pairs, or photocarriers. These photocarriers are not collected with high efficiency due to the high surface recombination velocity for minority carriers at the top of the window layer, and the low minority carrier diffusion lengths that are common in window layer materials. The window layer of lower subcells may also be a source of loss if the upper subcell(s) do not absorb all light above the band gap(s) of the active layers.
Intrinsic material lattice constants as used hereinafter are defined as the lattice constants, or lengths of the edges of the unit cell, of a freestanding crystal of the given material. Typically, lattice constants (e.g., a, b and c) are defined in 3 reference directions (e.g., x, y and z) for a given crystal structure, wherein z is the direction of growth. The given crystal structure specifies the angles between the reference directions. For cubic material such as GaAs, all three lattice constants are the same and a single intrinsic material lattice constant is typically used. In the instances of heteroepitaxy, if a semiconductor material has substantially different intrinsic material lattice constants in the plane perpendicular to the direction of growth (a0 and b0) than the lattice constants of the underlying layers on which is grown (a1 and b1), but shares the same angle between the reference directions in that plane, the material will initially adopt the lattice constants of the underlying layers. The semiconductor material is strained, and the degree of strain is proportional to the difference between its intrinsic material lattice constants and the adopted lattice constants. The strain in the plane perpendicular to the direction of growth, which may also be considered the “in-plane” strain, can be defined as, which can also be expressed as a percentage when multiplied by 100:
The above discussion has assumed that the plane perpendicular to the direction of growth contains the x and y reference directions for the crystal structure. Because this is often not the case, such as for off-axis growth, we instead talk about the intrinsic material lattice spacing (a0′ and b0′) of a freestanding crystal in the plane perpendicular to the direction of growth (the x′y′-plane) compared to the lattice spacing of the underlying layers in that plane (a1′ and b1′). When the angles between a0′ and b0′, and a1′ and b1′, are the same, the strain in the plane perpendicular to the direction of growth is analogous to the above definition:
A more complicated expression is needed when the angle between a0′ and b0′ is not the same as the angle between a1′ and b1′.
As the thickness of such a semiconductor layer with in-plane strain ∈xy is increased, the strain energy increases until a critical thickness is reached, at which point it becomes energetically favorable to relax and relieve strain through dislocations. The critical thickness depends upon many factors, including the materials involved, the substrate and/or underlying layers, growth technique and growth conditions. Below the critical thickness, the semiconductor layer is considered pseudomorphic, or fully strained. The semiconductor layer is considered fully relaxed when sufficient dislocations have formed that the layer has been essentially restored to its intrinsic material lattice constants (a0, b0, and c0). In general, layers may be fully strained, fully relaxed, or partially strained and partially relaxed when grown on top of a substrate or layers with substantially different lattice spacing in the plane perpendicular to the direction of growth.
For III-V multijunction solar cells based on GaAs or Ge substrates with emitters that are n-type and base layers that are p-type (i.e., “n-on-p” configuration), the top subcell typically has a window layer comprised of a single AlInP layer, with an (Al)InGaP emitter and base. Al0.52In0.48P is the material of choice for the top window layer, as it is the III-V material with the highest direct band gap (˜2.3 eV) that has substantially the same intrinsic material lattice constants as GaAs or Ge. However, Al0.52In0.48P absorbs a significant fraction of the incident photons with energies above its direct band gap (the fraction depending on the layer thickness), and it collects the photocarriers generated by these photons with low efficiency. More than 1 mA/cm2 under the AM1.5D or AM1.5G spectra may be lost (i.e., not collected) in this Al0.52In0.48P layer.
It is advantageous to minimize the light absorbed in the window layer due to the typical low collection efficiency for photocarriers in the window layer. One approach to minimize the absorbed light in AlInP window layers has been to increase the fraction of Al in the AlInP. This results in a window layer with a higher band gap that absorbs less light and therefore transmits more light to the emitter and base of the cell, which have higher photocarrier collection efficiencies. However, this window layer has an intrinsic material lattice constant that is sufficiently different from that of the underlying layers as to produce either high levels of in-plain strain ∈xy and/or relaxation via dislocations in the window layer.
High levels of strain or dislocations in the window layer at its interface with the emitter may increase the surface recombination velocity for minority carriers, lowering the collection efficiency in the emitter, and thus decreasing the overall efficiency of the solar cell. Thus, some of the gains in current created by increasing the fraction of Al in an AlInP window layer may be offset by an increased minority carrier surface recombination velocity. What is needed is subcell structure that decreases light absorption in the window layer while preserving a high quality window-layer/emitter interface.
According to the invention, a multilayer window structure is provided that is incorporated into one or more subcells of a multijunction solar cell. The window structure may be composed of two or more layers. The bottom layer, located immediately adjacent to the emitter, has intrinsic material lattice spacing that is substantially the same as the emitter in the plane perpendicular to the direction of epitaxial growth, and has a thickness between 1-15 nm. Because the bottom layer has substantially the same intrinsic material lattice spacing as the adjacent emitter in the plane perpendicular to the direction of growth, a high quality interface between the window structure and emitter can be formed, where there is minimal minority carrier recombination. Because this bottom layer is comparatively thin, it absorbs less of the incoming light than a thicker layer would. One or more upper layers of the window structure has progressively higher band gaps than the bottom layer and has intrinsic material lattice spacing that is substantially different than the emitter intrinsic material lattice spacing. A higher band gap can be achieved by using material(s) with intrinsic material lattice spacing(s) that are different from those of the first window layer. The total thickness of the complete window structure is between 10-60 nm. Three different embodiments are disclosed: a dual layer window, a multiple-layer window where each layer has a substantially uniform intrinsic material lattice spacing, and a window formed of a nonuniform composition in which the intrinsic material lattice spacing varies continuously with depth of the window layer structure. Compared to a conventional window layer that is uniform in composition and has the same intrinsic material lattice spacing as the emitter, the multi-layer window structure decreases the light absorption in the window structure and improves the overall current collection of the subcell. While the use of layers with different intrinsic material lattice spacing may lead to strain and/or relaxation and diminished interface quality, this occurs only in the upper window layer(s) and thus does not affect the window-structure/emitter interface.
The present invention relates to the window structure of the top subcell of a multijunction solar cell, as well as the window structure(s) of lower subcell(s). In one embodiment of the invention, as shown in
Referring to
The structures according to the invention increase the current collection in the associated subcell compared with a conventional single homogeneous window layer 28 (
The window structures according to the invention also may increase current collection in the subcell compared with a single window layer that has intrinsic material lattice spacing that is substantially different than that of the adjacent emitter layer. The window layer with substantially different intrinsic material lattice spacing will have significant in-plane strain and/or dislocations formed to accommodate the difference in lattice spacing. This may degrade its interface with the emitter, increasing minority carrier surface recombination velocity and degrading the subcell's performance. Such strain and defects are avoided in the invention by the lower window layer which has the same intrinsic material lattice spacing as the adjacent emitter in the plane perpendicular to the direction of growth. A low minority carrier surface recombination velocity is achieved at the emitter-window interface, which maximizes photocarrier collection from the emitter.
One method for producing the window structures according to the invention is disclosed here. According to this method, growth temperatures are between 300 and 550 degrees Celsius with a growth rate of at least 0.1 microns per hour. The source materials for the window structures are of at least 99.9999% purity. Molecular beam epitaxy is used, and the background pressure of the reactor is less than 10−5 Torr. It is noted that other growth methods may also be used to produce the window structures according to the invention.
When the subcell embodying the invention is the top subcell of a multijunction solar cell, one or more of the window layers may function as part of the anti-reflection coating of the solar cell, in addition to having a function as the window of the subcell.
The solar cells according to the invention may comprise any combination of III-V, group V or II-VI materials. In one preferred embodiment of the invention, the window is formed of some combination of layers of AlInP, AlP, InGaP, AlInGaP and GaP.
The invention has been explained with reference to specific embodiments. Other embodiments will be evident to those of ordinary skill in the art. In particular, while the invention has been explained with respect to multijunction solar cells comprised of two or more subcells, it will be evident to those of ordinary skill in the art that the invention is also applicable to crystalline solar cells comprised of a single subcell. It is therefore not intended for the invention to be limited, except as indicated by the appended claims.
Number | Name | Date | Kind |
---|---|---|---|
4404421 | Fraas | Sep 1983 | A |
4881979 | Lewis | Nov 1989 | A |
4935384 | Wanlass | Jun 1990 | A |
5009719 | Yoshida | Apr 1991 | A |
5166761 | Olson et al. | Nov 1992 | A |
5223043 | Olson et al. | Jun 1993 | A |
5316593 | Olson et al. | May 1994 | A |
5342453 | Olson et al. | Aug 1994 | A |
5376185 | Wanlass | Dec 1994 | A |
5405453 | Ho et al. | Apr 1995 | A |
5689123 | Major et al. | Nov 1997 | A |
5911839 | Tsai et al. | Jun 1999 | A |
5935345 | Kuznicki | Aug 1999 | A |
5944913 | Hou et al. | Aug 1999 | A |
6150603 | Karam et al. | Nov 2000 | A |
6252287 | Kurtz et al. | Jun 2001 | B1 |
6281426 | Olson et al. | Aug 2001 | B1 |
6340788 | King et al. | Jan 2002 | B1 |
6504091 | Hisamatsu et al. | Jan 2003 | B2 |
6617618 | Sato | Sep 2003 | B2 |
6660928 | Patton et al. | Dec 2003 | B1 |
6756325 | Bour et al. | Jun 2004 | B2 |
6764926 | Takeuchi et al. | Jul 2004 | B2 |
6765238 | Chang et al. | Jul 2004 | B2 |
6787385 | Barber et al. | Sep 2004 | B2 |
6815736 | Mascarenhas | Nov 2004 | B2 |
6951819 | Iles et al. | Oct 2005 | B2 |
7071407 | Fatemi et al. | Jul 2006 | B2 |
7119271 | King et al. | Oct 2006 | B2 |
7122733 | Narayanan et al. | Oct 2006 | B2 |
7122734 | Fetzer et al. | Oct 2006 | B2 |
7123638 | Leary et al. | Oct 2006 | B2 |
7126052 | Fetzer et al. | Oct 2006 | B2 |
7255746 | Johnson et al. | Aug 2007 | B2 |
7279732 | Meng et al. | Oct 2007 | B2 |
7709287 | Fatemi et al. | May 2010 | B2 |
7727795 | Stan et al. | Jun 2010 | B2 |
7807921 | Fetzer et al. | Oct 2010 | B2 |
7842881 | Comfeld et al. | Nov 2010 | B2 |
8067687 | Wanlass | Nov 2011 | B2 |
20030070707 | King et al. | Apr 2003 | A1 |
20030145884 | King et al. | Aug 2003 | A1 |
20040045598 | Narayanan et al. | Mar 2004 | A1 |
20040200523 | King et al. | Oct 2004 | A1 |
20050155641 | Fafard | Jul 2005 | A1 |
20050274409 | Fetzer et al. | Dec 2005 | A1 |
20060144435 | Wanlass | Jul 2006 | A1 |
20060162768 | Wanlass et al. | Jul 2006 | A1 |
20070034853 | Robbins et al. | Feb 2007 | A1 |
20070131275 | Kinsey et al. | Jun 2007 | A1 |
20080035939 | Puetz et al. | Feb 2008 | A1 |
20080149173 | Sharps | Jun 2008 | A1 |
20080245400 | Li | Oct 2008 | A1 |
20080257405 | Sharps | Oct 2008 | A1 |
20090014061 | Harris et al. | Jan 2009 | A1 |
20090057721 | Miura et al. | Mar 2009 | A1 |
20090078310 | Stan et al. | Mar 2009 | A1 |
20090145476 | Fetzer et al. | Jun 2009 | A1 |
20090229659 | Wanlass et al. | Sep 2009 | A1 |
20090255576 | Tischler | Oct 2009 | A1 |
20090272438 | Cornfeld | Nov 2009 | A1 |
20090288703 | Stan et al. | Nov 2009 | A1 |
20100096001 | Sivananthan et al. | Apr 2010 | A1 |
20100180936 | Kim | Jul 2010 | A1 |
20100218819 | Farmer et al. | Sep 2010 | A1 |
20100319764 | Wiemer et al. | Dec 2010 | A1 |
20110023958 | Masson et al. | Feb 2011 | A1 |
20110114163 | Wiemer et al. | May 2011 | A1 |
20110232730 | Jones et al. | Sep 2011 | A1 |
20120103403 | Misra et al. | May 2012 | A1 |
20120211071 | Newman et al. | Aug 2012 | A1 |
20120216858 | Jones-Albertus et al. | Aug 2012 | A1 |
20120227797 | Stan et al. | Sep 2012 | A1 |
20130014815 | Jones-Albertus et al. | Jan 2013 | A1 |
Number | Date | Country |
---|---|---|
63100781 | May 1988 | JP |
2010151553 | Dec 2010 | WO |
2011062886 | May 2011 | WO |
2011123164 | Oct 2011 | WO |
2012057874 | May 2012 | WO |
2012115838 | Aug 2012 | WO |
2012154455 | Nov 2012 | WO |
Entry |
---|
Denton et al., Vegard's Law, Physical Review A, The American Physical Society, vol. 43, No. 6, pp. 3161-3164 (1991). |
International Search Report and Written Opinion of the International Searching Authority for PCT Application No. PCT/US 12/36020, mailed on Aug. 14, 2012, 11 pages. |
Bertness K. A. et al., “29.5%-Efficient GaInP/GaAs Tandem Solar Cells,” Applied Physics Letters, vol. 65, Aug. 22, 1994, pp. 989-991. |
Fewster P. F., “X-Ray Scattering From Semiconductors” Second Edition, Imperial College Press, London, 2003, Ch. 1, pp. 1-22. |
Gu Y. et al., “Gas Source Growth and Doping Characteristics of A1InP on GaAs” Materials Science and Engineering B 131 (2006), pp. 49-53. |
Hovel H. J., “Semiconductors and Semimetals”, Academic Press, New York, 1975, Ch. 2, pp. 8-47. |
Olson J.M. et al., “High-Efficiency III-V Multijunction Solar Cells” Handbook of Photovoltaic Science and Engineering, 1st ed.; Luque, A., Hegedus, S., Eds.; Wiley: New York, NY, USA, 2003; Chapter 9, pp. 359-411. |
Bank, et al., “Molecular-beam epitaxy growth of low-threshold cw GainNAsSb lasers at 1.5 μm,” pp. 1337-1340, J. Vac. Sci. Technol. B 23(3), May/Jun. 2005. |
Cotal et al., “III-V multijunction solar cells for concentrating photovoltaics” pp. 174-192, www.rsc.org/ees, Energy and Environmental Science 2, (2009). |
Ferguson et al., Nonradiative Recombination in 1.56 μm GaInNAsSb/GaNAs Quantum-Well Lasers, pp. 1-3, published online Dec. 8, 2009, Applied Physics Letters 95, 231104 (2009). |
Friedman et al., “Analysis of the GaInP/GaAs/1-eV/Ge Cell and Related Structures for Terrestrial Concentration Application,” pp. 856-859, Conference Record of the Twenty-ninth IEEE Photovoltaic Specialists Conference, New Orleans, LA., May 19-24, 2002. |
Friedman et al., Breakeven Criteria for the GaInNAs Junction in GaInP/GaAs/GaInNAs/Ge Four-junction Solar Cells, pp. 331-344, Progress in Photovoltaics: Research and Applications. (2002). |
Friedman et al., “Analysis of Depletion-Region Collection in GaInNAs Solar Cells,” pp. 691-694, Conference Record of the Thirty-first IEEE Photovoltaic Specialists Conference, Lake Buena Vista, Florida, Jan. 3-7, 2005. |
Garcia et al., Analysis of Tellurium As N-Type Dopant in GaInP: Doping, Diffusion, Memory Effect and Surfactant Properties, pp. 794-799, Journal of Crystal Growth 298 (2007). |
Geelen et al., Epitaxial Lift-Off GaAs Solar Cell From a Reusable GaAs Substrate, pp. 162-171, Materials Science and Engineering B45 (1997). |
Geisz et al., “Inverted GaInP / (In)GaAs / InGaAs triple-junction solar cells with low-stress metamorphic bottom junctions,” Proceedings of the 33rd IEEE PVSC Photovoltaics Specialists Conference, (2008). |
Green et al., Progress in Photovoltaics: Research and Applications 19 (2011) pp. 565-572. |
Green et al., Progress in Photovoltaics: Research and Applications 20 (2012) pp. 12-20. |
Green, “Third Generation Photovoltaics: Advanced Solar Energy Conversion,” pp. 95-109, Springer Publishing, Berlin, Germany (2003). |
Green, Do Built-in Fields Improve Solar Cell Performance? pp. 57-66, Progress in Photovoltaics: Research and Applications (2009), Published online in Wiley InterScience (www.interscience.wiley.com) on Oct. 1, 2008. |
Harris Jr. et al., “Development of GainNAsSballoys: Growth, band structure, optical properties and applications,” 2007, Physics Status Solidi(b), vol. 244, Issue 8, pp. 2707-2729, Jul. 6, 2007. |
Jackrel et al., “GaInNAsSb Solar Cells Grown by Molecular Beam Epitaxy,” pp. 1-16, IEEE 4th World Conference on Photovoltaic Energy Conversion, Waikoloa, HI, 2006. |
Jackrel et al., “GaInNAsSb Solar Cells Grown by Molecular Beam Epitaxy,” 2006. Photovoltaic Energy Conversion, Conference Record of the 2006 IEEE 4th World Conference, vol. 1, p. 783-786, May 2006. |
Jackrel et al., “Dilute nitride GainNAs and GainNAsSb solar cells by molecular beam epitaxy”, pp. 1-8, Journal of Applied Physics 101 (114916), Jun. 14, 2007. |
Janotti et. al., Mutual Passivation of Electrically Active and Isovalent Impurities in Dilute Nitrides, Physical Review Letters 100, 045505 (2008). |
King et al., “High-Voltage, Low-Current GaInP/GaInP/GaAs/GaInNAs/Ge Solar Cells” Spectrolab Inc., 2002, pp. 852-855. |
King et al., “40% Efficient Metamorphic GaInP/GaInAs/Ge Multijunction Solar Cells,” J. of Applied Physics Letters, May 4, 2007. |
Kudrawiec, “Contactless electroreflectance of GaInNAsSb/GaAs single quantum wells with indium content of 8%-32%”, Jan. 2007, Journal of Applied Physics, vol. 101, pp. 013504-1-013504-9. |
Kurtz et al., “Projected Performance of Three and Four-Junction Devices Using GaAs and GaInP,” pp. 875-878, 26th IEEE Photovoltaics Specialists Conference, (1997). |
Merrill et al., Directions and Materials Challenges in High Performance Photovoltaics, Dec. 2007, JOM Energetic Thin Films, 59, 12, 26-30. |
Miyashita et al., Effect of Indium Composition on GaInNAsSb Solar Cells Grown by Atomic Hydrogen-Assisted Molecular Beam Epitaxy, pp. 000632-000635, 978-1-4244-2950@ 2009 IEEE. |
Miyashita et al., “Improvement of GaInNAsSb films fabricated by atomic hydrogen-assisted molecular beam epitaxy”, pp. 3249-3251, Journal of Crystal Growth 311, 2009. |
Ng et al., 1EV GANXAS1-X-YSBY Material for Lattice-Matched III-V Solar Cell Implementation on GAAS and GE, pp. 76-80, (2009). |
Ptak et al., “Effects of Temperature, Nitrogen Ions and Antimony on Wide Depletion Width GaInNAs,” pp. 955-959.J. Vac. Sci. Tech. B25(3), May/Jun. 2007 (published May 31, 2007). |
Ptak et al., “Low-acceptor-Concentration GaInNAs grown by Molecular-beam Epitaxy for High-current p-i-n. solar cell applications.” J. of Applied Physics, 98.094501 (2005). |
Ptak et al., “Defects in GaInNAs: What We've Learned so Far” National Renewable Energy Laboratory NREL/CP-520-33555, May 2003, 7 pages. |
Sabnis et al., A new roadmap for space solar cells, Industry Photovoltaics, www.compoundsemiconductor.net/csc/features-details/19735471, Aug./Sep. 2012, 5 pages. |
Solar Junction Inc, “Sharp Develops Solar Cell with Word's Highest Conversion Efficiency of 35.8%” Press Release, dated Oct. 22, 2009, 3 pages. |
Volz et al., Optimization of Annealing Conditions of (GaIn)(NAs) for Solar Cell Applications, pp. 2222-2228, Journal of Crystal Growth 310 (2008). |
Volz et al., MOVPE growth of dilute nitride III/V semiconductors using all liquid metalorganic precursors, Journal of Crystal Growth 311 (2009), pp. 2418-2526. |
Wiemer et al., “43.5% Efficient Lattice Matched Solar Cells” Proc. SPIE 810804 (2011), 5 pages. |
Wistey et al., Nitrogen Plasma Optimization for High-Quality Dilute Nitrides, pp. 229-233, Journal of Crystal Growth, available online on Feb. 1, 2005 at http://www.sciencedirect.com. |
Wu et al., Band Anticrossing in Highly Mismatched III-V Semiconductor Alloys, pp. 860-869, Semiconductor Science and Technology 17 (2002). |
Yamaguchi et al., “Multi-junction III-V solar cells: current status and future potential”, in: Solar Energy, vol. 79, issue 1, Jul. 2005. |
Yu et. al., Mutual Passivation of Group IV Donors and Nitrogen in Diluted GaNxAs1-x Alloys, pp. 2844-2846, Applied Physics Letters, vol. 83, No. 14 (Oct. 6, 2003). |
Denton et al., Vegard's Law, Physical Review, A, The American Physical Society, vol. 43 No. 6, pp. 3161-3164 (1991). |
Law et al., “Future technology pathways of terrestrial III-V multijunction solar cells for concentrator photovoltaic systems,” Solar Energy Materials & Solar Cells 94 (2010) pp. 1314-1318. |
International Search Report and Written Opinion PCT/US2008/008495 mailed Apr. 6, 2009, 5 pages. |
International Preliminary Report on Patentability PCT/US2008/008495 dated Jan. 12, 2010, 5 pages. |
International Search Report and Written Opinion corresponding to the PCT application No. PCT/US10/39534, date of mailing Sep. 8, 2010, 8 pages. |
International Search Report and Written Opinion corresponding to the PCT application No. PCT/US10/56800, date of mailing Jan. 26, 2011, 8 pages. |
International Search Report and Written Opinion corresponding to the PCT application No. PCT/US2010/061635, date of mailing Mar. 1, 2011, 7 pages. |
International Search Report and Written Opinion corresponding to the PCT application No. PCT/US11/36486, date of mailing Aug. 25, 2011, 12 pages. |
International Preliminary Report on Patentability for PCT Application No. PCT/US2010/056800, mailed on May 31, 2012, 6 pages. |
International Search Report and Written Opinion of the International Searching Authority for PCT Application No. PCT/US12/25307, mailed on Aug. 16, 2012, 13 pages. |
Non-Final Office Action of Jun. 10, 2010 for U.S. Appl. No. 12/217,818, 15 pages. |
Final Office Action of Jan. 1, 2011 for U.S. Appl. No. 12/217,818, 15 pages. |
Non-Final Office Action of Oct. 5, 2012 for U.S. Appl. No. 12/944,439, 15 pages. |
Non-Final Office Action of Oct. 24, 2012 for U.S. Appl. No. 12/749,076, 17 pages. |
Non-Final Office Action of Dec. 14, 2012 for U.S. Appl. No. 13/618,496, 16 pages. |
Final Office Action of Feb. 6, 2013 for U.S. Appl. No. 13/618,496, 8 pages. |
Number | Date | Country | |
---|---|---|---|
20120285526 A1 | Nov 2012 | US |