1. Field of the Invention
The present invention relates to a window system and light guiding film therein, and more particularly to a window system and light guiding film capable of changing the direction of incident light.
2. Description of the Related Art
The conventional sunlight guiding apparatus is of various types, such as plate, shutter or film, which is disposed on or near a window of a room and used for guiding sunlight beams into the room. The sunlight beams are directed to illuminate a reflector on the ceiling in the room. The sunlight beams are then reflected by the reflector, and used for indoor lighting or auxiliary illumination. In some conventional sunlight guiding apparatus, the sunlight beams are guided into the room directly without being reflected by the reflector on the ceiling.
The conventional sunlight guiding apparatus can guide the direct light beams and the diffused light beams of the sunlight to the reflector on the ceiling by retraction and/or reflection, so as to illuminate the interior of the room uniformly and reduce discomfort from glare. Further, the use of the conventional sunlight guiding apparatus can save energy required by daytime use of electric lighting equipment.
The drawback suffered by conventional sunlight guiding apparatus is described as follows. Most of the sunlight beams cannot be directed to the ceiling; that is, most of the sunlight beams cannot be reflected by the reflector in order to effectively resolve the problem of glare. Thus, the illumination effect is not ideal.
Therefore, it is necessary to provide a window system and light guiding film therein to solve the above problems.
The present invention is directed to a light guiding film, which comprises a film base and at least one microstructure. The film base has a first side and a second side is opposite the first side. The microstructure is disposed on the second side of the film base, and the refraction index of the microstructure is 1.9 to 2.6. The microstructure has a first surface and a second surface above the first surface, wherein a first inclination angle is between the first surface and a reference plane, the reference plane is perpendicular to the film base, a second inclination angle is between the second surface and the reference plane. The value of the first inclination angle is less than or equal to the value of the second inclination angle.
The light guiding film can thus guide the incident light beams into a room nearly horizontally and avoid glare. In addition, the light guiding film is relatively simple to manufacture.
The present invention is further directed to a window system, which comprises a first plate, a second plate and a light guiding film. The second plate is fixed to the first plate. The light guiding film is the same as the above-mentioned light guiding film, and is disposed in an accommodating space between the first plate and the second plate. The light guiding film is attached to the first plate, and comprises a film base and at least one microstructure.
The microstructure 12 is disposed on the second side 112 of the film base 11, and comprises a first surface 121 and a second surface 122. The second surface 122 is above the first surface 121. A reference plane 20 is defined as a phantom plane that is perpendicular to the first side 111 or the second side 112 of the film base 11. That is, when the light guiding film 1 stands upright, the reference plane 20 is a phantom horizontal plane. A first inclination angle θ1 is between the first surface 121 and the reference plane 20. A second inclination angle θ2 is between the second surface 122 and the reference plane 20. The value of the first inclination θ1 angle is less than or equal to the value of the second inclination angle θ2.
As shown in
In this embodiment, the cross section of the microstructure 12 is substantially triangular, and the first surface 121 intersects the second surface 122. However, the microstructure 12 may further comprises a curved chamfer 123, as shown in
The material of the film base 11 may be different form that of the microstructure 12. The film base 11 is made of light transmissible material, such as polymethyl methacrylate (PMMA), arcylic-based polymer, polycarbonate (PC), polyethylene terephthalate (PET), polystyrene (PS) or a copolymer thereof, with a refraction index of 1.35 to 1.65.
The microstructure 12 is made of light transmissible metal oxide, such as TiO2 or Ta2O5, with a refraction index of 1.9 to 2.6. In one embodiment, a layer of the metal oxide is formed on the film base 11, then the metal oxide is etched to form the microstructure 12. It is to be understood that the material of the film base 11 may be the same as that of the microstructure 12, which is all metal oxide.
In this embodiment, a plurality of incident light beams 30 becomes a plurality of output light beams 31 after passing through the light guiding film 1. In this embodiment, the light guiding film 1 is attached to a glass (not shown) of a window of a room, the incident light beams 30 are the sunlight beams outside the room, and the output light beams enter the room. The microstructure 12 faces the incident light beams 30.
As shown in
An incident angle θ4 is defined as the angle between the incident light beam 30 and the reference plane 20. The incident angle θ4 is defined as positive when the incident light beam 30 is downward, the incident angle θ4 is defined as 0 degrees when the incident light beam (not shown) is horizontal and parallel with the reference plane 20, and the incident angle θ4 is defined as negative when the incident light beam (not shown) is upward.
As shown in
In this embodiment, the incident angles θ4 of the incident light beams 30 are from 30 to 60 degrees, and the total luminous flux of the output light beams 31 with the output angles from 85 to 120 degrees is more than 40% of the total luminous flux of the output light beams 31 with the output angles from 0 to 180 degrees.
The light source 61 is used for generating the incident light beam at 30 degrees, the light source 62 is used for generating the incident light beam at 40 degrees, the light source 63 is used for generating the incident light beam at 50 degrees, and the light source 64 is used for generating the incident light beam at 60 degrees. The light sources 61, 62, 63, 64 are turned on at the same time.
The simulation parameters are as follows. The refraction index of the film base 11 is 1.59. The size of the light guiding film 1 is 10*10 mm2. The diameter of each of the light sources 61, 62, 63, 64 is 4 mm. The diameter of each of the receivers 65 is 13 mm. The distance between the light sources 61, 62, 63, 64 and the light guiding film 1 is 100 mm. The distance between the receivers 65 and the light guiding film 1 is 157 mm.
Table 1 below shows the simulation results of different types of the light guiding film 1, wherein n is the refraction index of the microstructure, and the result is the ratio of luminous flux. In the Table 1, the types of the light guiding film from left to right in sequence are first type (the first inclination angle θ1 is 15 degrees, the second inclination angle θ2 is 60 is degrees, and the refraction index of the microstructure 12 is 2.3), second type (the first inclination angle θ1 is 15 degrees, the second inclination angle θ2 is 52 degrees, and the refraction index of the microstructure 12 is 2.3), third type (the first inclination angle θ1 is 15 degrees, the second inclination angle θ2 is 66 degrees, and the refraction index of the microstructure 12 is 2.3), fourth type (the first inclination angle θ1 is 11 degrees, the second inclination angle θ2 is 60 degrees, and the refraction index of the microstructure 12 is 2.3), fifth type (the first inclination angle θ1 is 15 degrees, the second inclination angle θ2 is 68 degrees, and the refraction index of the microstructure 12 is 2.3), sixth type (the first inclination angle θ1 is 19 degrees, the second inclination angle θ2 is 60 degrees, and the refraction index of the microstructure 12 is 2.3), seventh type (the first inclination angle θ1 is 15 degrees, the second inclination angle θ2 is 60 degrees, and the refraction index of the microstructure 12 is 2.1) and eighth type (the first inclination angle θ1 is 15 degrees, the second inclination angle θ2 is 60 degrees, and the refraction index of the microstructure 12 is 2.6).
In Table 1, taking the leftmost first type for example, the ratio of luminous flux (64.9%) of the θt 0°˜180° represents the ratio of the total luminous flux of the output light beams 31 measured by the receivers 65 from 0 to 180 degrees to the total luminous flux provided by the light sources 61, 62, 63, 64. The ratio of luminous flux (64.8%) of the θt 90°˜180° represents the ratio of the total luminous flux of the output light beams 31 measured by the receivers 65 from 90 to 180 degrees to the total luminous flux provided by the light sources 61, 62, 63, 64. The ratio of luminous flux (20.6%) of the θt 90°˜105° represents the ratio of the total luminous flux of the output light beams 31 measured by the receivers 65 from 90 to 105 degrees to the total luminous flux provided by the light sources 61, 62, 63, 64. The ratio of luminous flux (55.2%) of the θt 90°˜120° represents the ratio of the total luminous flux of the output light beams 31 measured by the receivers 65 from 90 to 120 degrees to the total luminous flux provided by the light sources 61, 62, 63, 64. The ratio of luminous flux (55.2%) of the θt 85°˜120° represents the ratio of the total luminous flux of the output light beams 31 measured by the receivers 65 from 85 to 120 degrees to the total luminous flux provided by the light sources 61, 62, 63, 64.
The ratio of luminous flux (99.8%) of the θt 90°˜180°/θt 0°˜180° represents the ratio of the luminous flux ratio (64.8%) of the θt 90°˜180° to the luminous flux ratio (64.9%) of the θt 0°˜180°. The ratio of luminous flux (31.8%) of the θt 90°˜105°/θt 0°˜180° represents the ratio of the luminous flux ratio (20.6%) of the θt 90°˜105° to the luminous flux ratio (64.9%) of the θt 0°˜180°. The ratio of luminous flux (85.0%) of the θt 90°˜120°/θt 0°˜180° represents the ratio of the luminous flux ratio (55.2%) of the θt 90°˜120° to the luminous flux ratio (64.9%) of the θt 0°˜180°. The ratio of luminous flux (85.0%) of the θt 85°˜120°/θt 0°˜180° represents the ratio of the luminous flux ratio (55.2%) of the θt 85°˜120° to the luminous flux ratio (64.9%) of the θt 0°˜180°.
As shown in Table 1, taking the first type as an example, because of the specific design of the first inclination angle θ1 (15 degrees), the second inclination angle θ2 (60 degrees) and the refraction index, the ratio of luminous flux of θt 85°˜120°/θt 0°˜180° is 85.0%, which means 85.0% of the output light beams 31 are directed in the output angles from 85 to 120 degrees. In this embodiment, the light guiding film 1 is disposed on the relatively high window, i.e., air shutter, of the room. Such range of the output angles from 85 to 120 degrees is desired because the output light beams 31 with greater than 120 degrees will fall upon the ceiling near the window, and the output light beams 31 at less than 85 degrees will illuminate the human eye directly and cause glare. Therefore, the light guiding film 1 can guide the incident light beams 30 into the room nearly horizontally to avoid glare.
As shown in Table 1, although the ratios of luminous flux of the θt 85°˜120°/θt 0°˜180° of the fifth type and the sixth type are 29.7% and 28.4%, respectively, the ratios of luminous flux of the θt 90°˜180°/θt 0°˜180° of the fifth type and the sixth type are 77.7% and 88.9%, respectively. Therefore, the fifth type and the sixth type also have the effect of avoiding glare.
In addition, the sum of the value of the first inclination angle θ1 and the value of the second inclination angle θ2 is between 63 to 87 degrees; therefore, the light guiding film 1 is relatively simple to manufacture, and the transfer ratio of grooves is raised efficiently.
In this embodiment, the light guiding film 1 is attached to the first plate 41, the microstructure 12 is disposed on the second side 112 of the film base 11. The value of the first inclination angle θ1 is between 11 to 19 degrees, and the value of the second inclination angle θ2 is between 52 to 68 degrees, and the sum of the value of the first inclination angle θ1 and the value of the second inclination angle θ2 is between 63 to 87 degrees. Preferably, the value of the first inclination angle θ1 is between 13 to 17 degrees, and the value of the second inclination angle θ2 is between 58 to 66 degrees. More preferably, the first inclination angle θ1 is 15 degrees, and the second inclination angle θ2 is 60 degrees. The types of light guiding film 1 and description thereof are the same as or similar to the description stated above, and will not be repeated hereinafter.
While several embodiments of the present invention have been illustrated and described, various modifications and improvements can be made by those skilled in the art. The embodiments of the present invention are therefore described in an illustrative but not restrictive sense. It is intended that the present invention should not be limited to the particular forms as illustrated, and that all modifications which maintain the spirit and scope of the present invention are within the scope defined in the appended claims.
Number | Date | Country | Kind |
---|---|---|---|
100103475 A | Jan 2011 | TW | national |
Number | Name | Date | Kind |
---|---|---|---|
721256 | Wadsworth | Feb 1903 | A |
4089594 | Ewin | May 1978 | A |
4357074 | Nardini | Nov 1982 | A |
4557565 | Ruck et al. | Dec 1985 | A |
5123722 | Meymand | Jun 1992 | A |
5295051 | Cowling | Mar 1994 | A |
5461496 | Kanada et al. | Oct 1995 | A |
5650875 | Kanada et al. | Jul 1997 | A |
5880886 | Milner | Mar 1999 | A |
6311437 | Lorenz | Nov 2001 | B1 |
6367937 | Koster | Apr 2002 | B2 |
6435683 | Milner | Aug 2002 | B1 |
6616285 | Milner | Sep 2003 | B2 |
7072096 | Holman et al. | Jul 2006 | B2 |
8107164 | Tsai | Jan 2012 | B2 |
20050254130 | Graf et al. | Nov 2005 | A1 |
20060215074 | Jak et al. | Sep 2006 | A1 |
20080030859 | Usami | Feb 2008 | A1 |
20080291541 | Padiyath et al. | Nov 2008 | A1 |
20090009870 | Usami | Jan 2009 | A1 |
20100134720 | Choi et al. | Jun 2010 | A1 |
20100177394 | Guering et al. | Jul 2010 | A1 |
20110043919 | Ko et al. | Feb 2011 | A1 |
Number | Date | Country |
---|---|---|
97204733.6 | Nov 1998 | CN |
1578915 | Feb 2005 | CN |
200931086 | Jul 2009 | TW |
M379027 | Apr 2010 | TW |
0017477 | Mar 2000 | WO |
2003071079 | Aug 2003 | WO |
Entry |
---|
Office Action issued Oct. 29, 2012 from JPO for the JP Patent Application No. 2011-029964 cites WO 2008/147632 and JP 2010-527815 (which corresponds to WO 2008/147632). |
English translation of Office Action issued Oct. 29, 2012 from JPO for the JP Patent Application No. 2011-029964. |
Office Action issued Feb. 16, 2013 for counterpart China application No. 201110052379.7 which cites US 4557565A and US2005/0254130. |
English translation of Office Action issued Feb. 16, 2013 for counterpart China application No. 201110052379.7 which cites US 4557565A and US2005/0254130. |
Notice of Allowance issued Oct. 16, 2012 for the TW patent application No. 099126140 (which is a counterpart application of U.S. Appl. No. 12/793,490) cites US 4557565, 2009/0009870 and TW 200931086. |
English abstract of TW 200931086, Jul. 2009. |
Office Action issued Nov. 27, 2012 from German Patent and TDMK Office for the DE Patent Application No. 102011000506.4 cites US 2008/0291541A, WO 03/071079A1, US 2006/0215074, and US 2010/0134720. |
English translation of Office Action issued Nov. 27, 2012 from German Patent and TDMK Office for the DE Patent Application No. 102011000506.4. |
English abstract of WO 03/071079A1, Aug. 2003. |
Office Action issued on Apr. 30, 2013 from Japan Patent Office for the corresponding JP Patent Application No. 2011-029964. |
English Translation of Office Action issued on Apr. 30, 2013 from Japan Patent Office for the corresponding JP Patent Application No. 2011-029964. |
Office Action issued May 24, 2012 for the CN Patent Application No. 201010281708.0 cites CN 1578915A and US 20090009870 A1 (CN Patent Application No. 201010281708.0 issued May 24, 2012 is a counterpart of CN application of U.S. Appl. No. 12/793,490 relevant to the present application). |
English Abstract of Office Action issued May 24, 2012 for the CN Patent Application No. 201010281708.0. |
English Abstract CN 1578915A, Feb. 2005. |
Number | Date | Country | |
---|---|---|---|
20120194913 A1 | Aug 2012 | US |