Windrow merger pickup head shiftable mount

Information

  • Patent Grant
  • 9295189
  • Patent Number
    9,295,189
  • Date Filed
    Friday, May 22, 2015
    9 years ago
  • Date Issued
    Tuesday, March 29, 2016
    8 years ago
Abstract
A windrow merger having at least one pickup head member, the at least one pickup head member being selectively shiftable between a working disposition and a transport disposition and having at least a first pivot for shifting the at least one pickup head member from the substantially vertical transport disposition to a substantially horizontal intermediate disposition and at least a second pivot for shifting the at least one pickup head member from the substantially horizontal intermediate disposition through an arc to the working disposition.
Description
TECHNICAL FIELD

The present invention relates to a farm implement. More particularly, the present invention relates to a device for merging one or more windrows in a field.


BACKGROUND OF THE INVENTION

When a feed product, such as alfalfa, is ready to be harvested, the product may be cut and then raked into long, generally parallel windrows in the field. In cases in which the product is too moist for further processing, the product is typically left in such windrows to afford drying of the product by the wind and sun in the field. After several days of drying in the field, the windrow is typically picked up and the product may be either stored or further processed, such as by bailing.


In order to minimize the number of windrows that must be picked up, it makes economic sense to merge one or more of the windrows into a single larger windrow. Such merging minimizes the number of passes through the field that are necessary to pick up the crop. Accordingly, there is a need in the industry for ever more efficient windrow mergers. Typically, a merger may have three individual pick up heads positioned adjacent one another when in the working disposition. Each pick-up head is typically powered by an individual hydraulic motor. In the past, the hydraulic motor was positioned at an end of the pick-up head. In such disposition, the hydraulic motor prevented adjacent pick-up heads from being disposed proximate each other. Accordingly, there was a significant gap between the conveyors of each of the adjacent pick-up heads and crop being transported on the conveyor was lost through the gap.


Additionally, in the past, the tines of the pick-up head were driven at a constant rotational speed. Accordingly, the crop that had been picked up was transported at a constant speed to be deposited unevenly and at the forward edge of the conveyor.


Further, prior art mergers were susceptible to a bouncing action induced in the two outboard pick-up heads as a result of passage over a rough field surface. Such bouncing caused the pick-up heads to miss picking up crop that was laying the field. Additionally, it would be desirable to be able to provide a bias to the outboard pick-up head merging the pick-up heads to stay in contact with the underlying ground. As an aid to this, it would be desirable to have a selectable adjustable height of the pick-up heads relative to the underlying ground.


Finally, it may be desirable to offset the windrow merger with respect to the towing tractor such that an outboard pick-up head would follow directly behind the tractor and the center pick-up head and the second outboard pick-up head would be displaced laterally with respect to the direct of travel of the tractor.


SUMMARY OF THE INVENTION

The windrow merger of the present invention substantially meets the aforementioned needs of the industry. The individual pick-up heads of the windrow merger are driven by an internally disposed hydraulic motor. Such disposition eliminates the need for a hydraulic motor disposed on an end of an individual pick-up head. Accordingly, the individual pick-up heads can be disposed very close to one another when in the working disposition. The gap existing between adjacent conveyors is minimized to the point that crop being transferred from a conveyor to an adjacent conveyor experiences virtually no loss in making the transition between the adjacent conveyors.


An additional feature of the windrow merger of the present invention is cam driven tines. The effect of the cam is to accelerate the tangential rotational speed of the tines proximate the apex of tine motion. The effect of the acceleration of the tines is to accelerate the speed of the crop being carried by the tines such that the crop does not merely drop onto the leading edge of the conveyor but is effectively spread out across the full width dimension of the conveyor by means of a flicking motion imparted to the crop by the accelerated tines.


A further feature of the instant windrow merger is a respective hydraulic accumulator that is hydraulically in communication with a respective actuator that is coupled to an individual outboard pick-up head. The effect of the hydraulic accumulator is pressurized upon upward motion of the outboard pick-up head. After passing the rise in the ground, the accumulator transfers such hydraulic pressure back to the actuator to extend the actuator, thereby exerting a downward bias on the individual outboard pick-up heads in order to minimize bounce of the individual outboard pick-up head over uneven underlying ground.


A further feature of the windrow merger of the present invention is individually adjustable height of the individual pickup heads above the ground and of the merger itself. To accomplish this, the skids that are disposed beneath the individual pick-up heads are mounted to the frame of the respective pick-up head by means of a shiftable mount. Preferably, the shiftable mount is comprised of a pair of actuators that can set the distance between the skid and the pick-up head frame as desired to effect varying heights of the respective pick-up head above the underlying ground. Additionally, the truck assembly is shiftable relative to the remainder of the chassis member such that the chassis member may be positioned at a selected height above the underlying ground.


A further feature of the windrow merger of the present invention is that the wheels on the truck assembly are steerable. By such steering, it is possible to offset the track of the windrow merger as compared to the towing tractor in order to displace the windrow merger either right or left with respect to the direction of travel of the towing tractor.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a front quarter perspective view of the windrow merger of the present invention;



FIG. 2 is a rear quarter perspective view of the windrow merger;



FIG. 3 is a rear quarter perspective view of the windrow merger;



FIG. 4 is a perspective view of a pick-up head;



FIG. 4a is a cut-away view of the portion of the pick-up head of FIG. 4 as depicted in the rectangle 4a;



FIG. 5 is a side elevational view of a cam;



FIG. 6 is a side rear perspective view of the lower structure of the right side of the windrow merger;



FIG. 7 is a perspective of the windrow merger in the transport disposition;



FIG. 8 is a perspective view of the windrow merger with a pick-up head in the first transitional disposition and a pick-up head in the folded transport disposition;



FIG. 9 is a perspective view with an outboard pick-up head in the working disposition and a second outboard working head in the first transitional disposition; and



FIG. 10 is a top planform view of the windrow merger in a transition disposition between the transport disposition and the working disposition.





DETAILED DESCRIPTION OF THE DRAWINGS

The windrow merger of the present invention is shown generally at 10 in the figures. Merger 10 includes two major components, chassis member 12 and pick-up head members 14, 16, and 18.


The chassis member 12 of the merger 10 includes four major subcomponents; mount assembly 20, tongue assembly 22, support assembly 24, and truck assembly 26.


Turning first to the mount assembly 20, as depicted in FIG. 1, an arched, boxed frame 30 includes a pair of forward directed couplers 32 for removably coupling to a tractor or other towing vehicle. A PTO shaft 34 is operably coupled at a first end to a gear box 36. The PTO shaft 34 may be coupled at its second end to the PTO of a tractor. The gear box 36 is preferably disposed in the arch defined by the frame 30 and is coupled to a hydraulic pump 38. Preferably, the gear box 36 is useful for either stepping up or reducing the rpm available at the PTO shaft of the tractor. A shackle 40 is fixedly coupled to the rear of the arched frame 30. The shackle 40 includes a pair of spaced apart shackle brackets 42. Each of the shackle brackets 42 has a bore 44 defined therein, the bores 44 being in registry. A pin 46 may be received within the two bores 44.


The tongue assembly 22 of the chassis member 12 includes at its proximal end a receiver 50. The receiver 50 is sized such that the receiver 50 may be disposed in the aperture defined between the shackle brackets 42. The pin 46 may be received within a bore (not shown) defined with the receiver 50 for pivotally coupling the tongue assembly 22 to the mount assembly 20.


The receiver 50 is fixedly coupled to a boxed tongue 52. The boxed tongue 52 preferably rises at an angle and then extends rearward in a generally horizontal disposition to overlie the pick-up head member 18. As depicted in FIG. 2, a removable support 53 may be disposed beneath the boxed tongue 52 to support the forward portion of the merger 10 when the merger 10 is not connected to a tractor or the like.


A plurality of hard hydraulic lines 54 are disposed on the upward directed surface of the tongue 52. At their proximal ends, the hydraulic lines 54 are coupled by flexible hydraulic lines 55 (see FIG. 2) that are coupled to the hydraulic pump 38. At their distal ends, the hard hydraulic lines 54 are coupled by flexible hydraulic lines (not shown, but that are similar to the flexible hydraulic lines 55) to the various actuators that are described below.


The distal end of the boxed tongue 52, terminates in a flange 56. A boxed member 58 is disposed rearward of the distal end of the tongue 52. The boxed member 58 includes a flange 60 which is mated to the flange 56 by a plurality of bolts disposed in bores defined in the respective flanges 56, 60. Structure 64 depends from the boxed member 58. A rear cover 66 and a pair of essentially mirror image side covers 68 are coupled to the depending structure 64. The depending structure 64, the rear cover 66 and the two side covers 68 comprise components of the support assembly 24.


As noted in FIGS. 1-3 and 9, the pick-up head member 18 is supported by the support assembly 24 by means of four parallel bars 65. Each of the bars 65 is coupled at a first end by a pivotable coupling 69 to the pick-up head member 16 and at an opposed second end by a pivotable coupling 69 to the support assembly 24.


The support assembly 24 includes a generally triangular shaped fixed structure 70. The apex of this triangular shape depends from the boxed member 58. It should be noted that passing a vertical plane through the longitudinal axis of the tongue 52 as depicted in FIG. 1 splits the merger 10 into two mirror image halves, the components described below being replicated on both sides of the plane.


The fixed structure 70 of the depending structure 64 includes at least in part a support beam 72. The support beam 72 is affixed to a base support 74. The base support 74 includes a pair of outward directed and spaced apart brackets 76. See also FIG. 10. Each of the brackets 76 has a bore (not shown) defined therein and a pin 80 disposed in the bores defined in the respective brackets 76. The pin 80 extends from bracket 76 to bracket 76. The pin 80 pivotally couples a head support 78 to the base support 74. The head support 78 is pivotable about the pin 80, the axis of rotation being the longitudinal axis of the pin 80 which is essentially a fore-aft axis.


A translation actuator 82 operably couples the head support 78 to a respective one of the pick-up head members 14, 16. See also FIG. 6. The translation actuator 82 has a cylinder end coupling 84 that is pivotally coupled to the head support 78. The translation actuator 82 further has a piston end coupling 86 that is pivotally coupled to a respective pick-up head member 14, 16 by means of a generally vertically disposed pin 87 disposed in a coupler 85.


A further actuator is coupled to the head support 78. This actuator is the lift actuator 88. The lift actuator 88 has a cylinder end coupling 90 that is pivotally coupled to the support assembly 24 by means of the fixed structure 70 proximate the apex thereof. Such coupling is by means of a bracket 92, the bracket 92 having a pin 93 therein. A piston end coupling 94 of the lift actuator 88 is pivotally coupled to the head support 78 by means of a bracket 96, the bracket 96 having a pin 95 disposed in a pair of bores (not shown) defined in the bracket 96.


A hydraulic accumulator 97 is preferably affixed to the support beam 72. The hydraulic accumulator 97 is fluidly coupled to the lift actuator 88 by flexible hydraulic lines not shown, but similar to lines 55 noted above. A remotely controllable valve 98 is affixed to the hydraulic accumulator 97. The valve 98 is shiftable between a disposition in which the hydraulic accumulator 97 is fluidly coupled to the lift actuator 88 and a disposition in which the hydraulic accumulator 97 is fluidly isolated from the lift actuator 88.


The truck assembly 26 is the fourth assembly of the chassis member 12 and is rotatably coupled to the fixed structure 70 by means of a pair of spaced apart pins 103, a pair of adjustable links 107, and a pair of actuators 116, described in greater detail below.


Accordingly in order to affect the above noted coupling, as depicted in FIG. 8, a pair of truck brackets 100 are fixedly coupled to the structure 70. The truck brackets 100 are pivotally coupled to a coupler 102 affixed to an axle plate 112 by means of the pin 103. A pair of link brackets 104 are fixedly coupled to the structure 70. Each of the link brackets 104 is pivotally coupled to a respective adjustable link 107 by means of a pin 106. See FIG. 3. The final means of coupling the truck assembly 26 to the structure 70 are the actuators 116. Accordingly, a pair of actuator brackets 100 are fixedly coupled to the structure 70. Each of the respective actuator brackets 108 are pivotally coupled to an actuator 116 by means of a pin 110.


The fourth assembly of the chassis member 12 is the truck assembly 26. The truck assembly 26 generally is disposed rearward of the chassis member 12 is operably pivotally coupled to the support assembly 24 as noted above. The truck assembly 26, best viewed in FIGS. 1-3, includes an axle plate 112 and a wheel assembly 113. The axle plate 112 is transversely mounted with respect to the longitudinal axis of the merger 10. The upper surface of the axle plate 112 includes a pair of upward directed spaced apart actuator brackets 114. Each of the actuators 116 has a piston and coupler 118 that is coupled to the bracket 114 by means of a transverse pin 119. Each of the actuators 116 additionally has a cylinder end coupler 120 is pivotally coupled to the respective actuator bracket 108 by a pin 110, as noted above.


The wheel assembly 113 includes a pair of spaced apart, mirror image wheel suspensions 122. Each of the wheel suspensions 122 includes a substantially vertically disposed king pin 124. The wheel suspension 122 is free to rotate about the king pin 124. A steering actuator 126 is operably coupled to each of the respective wheel suspension 122. The steering actuator 126 includes a piston end coupler 128 that is coupled to the wheel suspension 122 offset from a stub axle 130 and the king pin 124. A cylinder end coupler 132 of the steering actuator 126 is pivotally coupled to a steering bracket 134 mounted proximate the rear margin of the axle plate 112.


The wheel assembly 113 further includes a rim 136 rotatably mounted to the stub axle 130 and a preferably pneumatic tire 138 mounted on the rim 136.


A pair of spaced apart markers 140 are operably coupled to the upper margin of the axle plate 112. The markers 140 may be reflectors and/or electric lights.


The second members of the merger 10 of the pick-up head members 14, 16, and 18. It should be noted that each of the pick-up head members 14, 16, 18 is virtually identical, so that the description below applies to all three. The pick-up head members 14, 16, 18 include two major subassemblies, conveyor assembly 146 and pick-up assembly 148.


The conveyor assembly 146 is best viewed in FIGS. 3, 7 and 8. Each of the conveyor assemblies 146 includes a frame 150. The frame 150 includes a rear rail 152 and a front rail 154. A plurality of frame members 155 extend between the rear rail 152 and the front rail 154.


A forward arching deflector 156 is fixedly coupled to the rear rail 152 and partially overlies a conveyor 158.


The conveyor 158 is endless and is supported by a pair of spaced apart rotatable axles 160. The conveyor 158 is formed of a plurality of linked segments 161. The upper surface of the conveyor 158 translates as indicated by the arrow 162. Accordingly, crop deposited on the conveyor 158 is transferred leftward in the depiction of FIG. 3.


A preferably hydraulic drive system 164 is mounted on the rear face of the rear rail 152. The hydraulic drive system 164 is operably coupled to the conveyor 158 for imparting the travel indicated by the arrow 162 to the conveyor 158.


The second subassembly of the pick-up head members 14, 16, 18 is the pick-up assembly 148. The pick-up assembly 148 of each of the pick-up head members 14, 16, 18 includes a generally planar end plate 174. The end plate 174 preferably includes a recessed mount 176 for an interiorly disposed drive shaft bearing (not shown). As described below, the drive shaft bearing rotatably supports a drive shaft 196. The planar end plate 174 is a highly advantageous feature of the merger 10. By being planar and not obstructed other items (specifically, prior art mergers typically have a motor for rotationally driving tines disposed on the endplate), adjacent pickup head members are capable of being brought into very close proximity. Such closeness facilitates minimal interruption in the pickup of crop along the full front face to the pick-up head members 14, 16, 18. Additionally, the space between adjacent conveyor assemblies 146 is minimized and crop loss that might occur during the transfer of crop to an adjacent conveyor assembly 146 is minimized.


The pick-up assembly 148 of each of the pick-up head members 14, 16, 18 further include a plurality of spaced apart, semi-circular fixed spacers 178. A plurality of rotatable tines 180 project through the apertures defined between adjacent fixed spacers 178.


The rotatable tines 180 are powered by an internal drive assembly 182 as depicted in FIGS. 4, 4a. The internal drive assembly 182 includes a drive mount plate 184 that is fixedly coupled to a housing 186. The drive mount plate 184 fixes the internal drive assembly 182 within the generally circular aperture defined internal to the fixed spacers 178 and the tines 180. It is significant to note that the internal drive assembly 182 is positioned approximately midway between the two end plates 174 of a respective pickup head member 14, 16, 18, as indicated in FIG. 4. The disposition of the internal drive assembly 182 within the internal aperture defined by the fixed spacers 178 and the tines 180 frees up the end plates 174 so that adjacent pick-up head members 14, 16, 18 can be disposed very closely together thereby ensuring a more efficient pick-up of crop and lateral conveying of the crop once picked up.


A motor 188 is mounted on the housing 186. The mounting is affected by mating a flange 190 to the housing 186 preferably by means of bolts. At least two hydraulic lines 192 provide hydraulic fluid to the motor 188.


The housing 186 provides a mount for a transmission 194. The transmission 194 preferably is comprised of two meshed gears, preferably of the same size. The 1:1 ratio of the gears of the transmission 194 preferably matches the revolutional speed of the drive shafts 196, 198 to the output shaft of the motor 188.


One of the gears in the transmission 194 is fixedly coupled to the drive shafts 196, 198. The respective drive shafts 196, 198 are operably coupled to a plurality of tine mounting shafts 199, such that rotation of the respective drive shafts 196, 198 by the motor 188 result in imparting rotational motion to the plurality of tine mounting shafts 199.


A cam 200 is fixedly coupled to the housing 186. The cam 200 has a channel 201 defined between an inner cam race 202 and an outer cam race 203. A cam follower 204 is fixedly coupled to each of the plurality of tine mounting shafts 199. Each of the cam followers 204 includes a roller 206 coupled proximate an end of the cam follower 204 by means of a coupler 208. The follower arm 210 of the cam follower 204 is coupled to the tine mounting shaft 199 by means of a welded coupler 212. The coupler 212 additionally fixedly couples the tine 216 to the tine mounting shaft 199.


Referring to FIG. 5, it should be noted that the cam 200 has a generally oval shape, peaking at an apex at the top and at the bottom of the cam 200. Accordingly, a lesser arc 220 is presented at the top and bottom of the cam 200 and a greater arc 218 is presented by the cam 200 at its forward face and at its rearward face, forward being defined as to the right in FIG. 5 and rearward as being defined as to the left in FIG. 5.



FIGS. 6-8 depict a pair of skid plates 230 mounted beneath each of the pick-up head members 14, 16, 18. Each of the skid plates 230 includes a ground engaging plate 231. The plate 231 is mounted on a shiftable mount 232. The shiftable mount 232 includes a pair of actuators 234. The actuators 234 are coupled at a first end to the plate 231 and at a second end to the frame 150. Selective porting of hydraulic fluid to the actuators 234 shifts the plate 231 relative to the underside of the respective pick-up head members 14, 16, 18, thereby setting the desired height of the respective pick-up head members 14, 16, 18 relative to the underlying ground.


In operation, the merger 10 is shiftable between a transport disposition (FIG. 7) and a working disposition (FIGS. 1-3). In the transport disposition, the two pick-up head members 14 and 16 are in an elevated disposition with the pick-up assemblies 148 thereof defining the uppermost dimension of the merger 10. As noted above, pick-up head member 18 is fixed and remains essentially in the same disposition that pick-up head member 18 assumes during working operations. The truck assembly 26 may be rotated relative to the support assembly 24 to elevate the merger 10 above the underlying ground as desired. This is affected by extending actuators 116, thereby causing the truck assembly 26 to rotate above the pin 103 and assume the position more tucked under the chassis member 12 of the merger 10.


Shifting the merger 10 from the transport disposition to the working disposition involves a number of steps. Preferably, such shifting is effected by moving one pick-up head member 14, 16 at a time in order to conserve on the volume of high pressure hydraulic fluid required to complete the operation. Accordingly, in the depiction of FIG. 8, pick-up head member 16 has been shifted from the essentially vertical disposition of FIG. 7 to a substantially horizontal disposition. Such shifting is effected by extending lift actuator 88, thereby causing the respective pick-up head member 14, 16 to rotate about the pin 80. This disposition is depicted for pick-up head member 16 in FIG. 8 and pick-up head member 14 in FIG. 9.


The next step is to rotate the respective pick-up head member 14, 16 through an arc of approximately 90 degrees into alignment with the pick-up head member 18 in the working disposition. Such action is effected by extending the translation actuator 82, thereby causing the respective pick-up member 14, 16 to rotate about the essentially vertically disposed pin 87 of the coupler 85.


Once the three pick-up head members 14, 16, 18 are disposed in the working disposition depicted in FIGS. 1-3, the height of the merger 10 relative to the underlying ground may be adjusted as desired by moving the shiftable mount 232 of the respective skid plates 230 to set the respective plates 231 a desired distance from the underside of the respective pick-up head members 14, 16, 18. Additionally, the truck assembly 26 may be rotated to a desired position relative to the support assembly 24 in order to adjust the rear portion of the merger 10 relative to the underlying ground.


As the merger 10 is towed across a field, the pick-up head members 14 and 16 are subject to rise and fall responsive to undulations in the underlying ground. Accommodating the rise, the respective pick-up head members 14, 16 is beneficial, but it is also important to bring the respective pick-up head members 14, 16 back into contact with the ground as the ground falls away. Accordingly, the merger 10 employed a hydraulic accumulator 97 fluidly coupled to a respective lift actuator 88. As the respective pick-up head member 14, 16 rises, the piston of the respective lift actuator 88 is forced back into its cylinder. Such action increases the pressure of the hydraulic fluid in the lift actuator 88. This rise in pressure can be transferred to the hydraulic accumulator 97 and is available there to be transferred back to the lift actuator 88 as the respective pick-up head member 14, 16 drops back down. As such, the recovered hydraulic pressure of the lift actuator 88 acts to force the respective pick-up head member 14, 16 downward after having passed over a rise in the underlying ground. Should such action not be desired, the valve 98 is available in order to isolate the accumulator 97 from the lift actuator 88.


Pick-up of the crop in a field is affected by the rotating tines 216 and the crop is merged by conveyance on the respective conveyors 158. The tines 216 are typically rotated in the direction as indicated by arrow 222 of FIG. 1. Accordingly, the tines 216 pick-up crop and translated upward across the weeded face of the respective pick-up assembly 148. As the roller 206 coupled to a respective tine 216 approaches the apex of the cam 200, effective rotational speed of the tine 216 is accelerated thereby imparting a flicking motion to the crop being conveyed by the tine 216. Such motion causes the crop to be spread rather more evenly across the full width of the conveyor 158. The crop is then conveyed to the outboard end of the pick-up head member 14 and deposited in a windrow on the ground.


The embodiments above are intended to be illustrative and not limiting. Additional embodiments are within the claims. In addition, although the present invention has been described with reference to particular embodiments, those skilled in the art will recognize that changes can be made in form and detail without departing from the spirit and scope of the invention. Any incorporation by reference of documents above is limited such that no subject matter is incorporated that is contrary to the explicit disclosure herein.

Claims
  • 1. A windrow merger having at least one pickup head member, comprising: a motor coupled to a drive shaft, the drive shaft being operably coupled to a plurality of tine mounting shafts;the at least one pickup head member being selectively shiftable by a shiftable mount between a working disposition and a transport disposition and having at least a first pivot for shifting the at least one pickup head member from the substantially vertical transport disposition to a substantially horizontal intermediate disposition, the first pivot including a first pivot pin and a first pivot bore for receiving the first pivot pin, wherein the first pivot is configured to rotate about the first pivot pin, andat least a second pivot for shifting the at least one pickup head member from the substantially horizontal intermediate disposition through an arc to the working disposition, the second pivot including a second pivot pin and a second pivot bore for receiving the second pivot pin, wherein the second pivot is configured to rotate about the second pivot pin.
  • 2. The windrow merger of claim 1 wherein a lift actuator is coupled to the at least one pickup head member for actuating the shifting of the at least one pickup head between the transport disposition and the intermediate disposition.
  • 3. The windrow merger of claim 2 wherein the lift actuator is coupled to a hydraulic accumulator.
  • 4. The windrow merger of claim 3 wherein a fluid pressure in the lift actuator is available to increase a fluid pressure in the hydraulic accumulator.
  • 5. The windrow merger of claim 4 wherein the fluid pressure in the hydraulic accumulator may be selectively fed back to the lift actuator for asserting a downward pressure on the at least one pick head member.
  • 6. The windrow merger of claim 4 wherein a controllable valve controls the hydraulic pressure for controlling the fluid pressure in the hydraulic accumulator.
  • 7. The windrow merger of claim 4 wherein the controllable valve is remotely controlled at a control distance from the controllable valve.
  • 8. The windrow merger of claim 1 having at least a second pickup head member, wherein the at least a second pickup head member is pivotally coupled to a support assembly by at least four parallel bars.
  • 9. The windrow merger of claim 8 wherein each respective one of the four bars has a first pivotable coupling, the pivotable coupling acting to couple the respective bar to the second pickup head member and a second pivotable coupling acting to couple the respective bar to the support assembly.
  • 10. The windrow merger of claim 1 wherein a height of the at least one pickup head member relative to an underlying ground is selectively adjustable using the shiftable mount.
  • 11. The windrow merger of claim 10 wherein the at least one pickup head member includes at least one ground engagable skid plate.
  • 12. The windrow merger of claim 11 wherein the skid plate is shiftably coupled to the at least one pickup head member.
  • 13. The windrow merger of claim 11 wherein the skid plate is shiftably coupled to the at least one pickup head member by at least a first actuator, the at least a first actuator being shiftable to set the desired height of the at least one pickup head member relative to an underlying ground.
RELATED APPLICATIONS

This application is a continuation of application Ser. No. 14/096,594 filed Dec. 4, 2013, which in turn is a division of application Ser. No. 13/075,766 filed Mar. 30, 2011, now U.S. Pat. No. 8,863,489 issued Oct. 21, 2014, each of which is hereby fully incorporated herein by reference.

US Referenced Citations (148)
Number Name Date Kind
1387176 Price et al. Aug 1921 A
1927458 Klise Sep 1933 A
2008470 Rall Jul 1935 A
2195381 Patterson Mar 1940 A
2256829 Hyman Sep 1941 A
2343583 Rogers Mar 1944 A
2388212 McElhoe et al. Oct 1945 A
2893537 Krahn Jul 1959 A
3016235 Cnudde Jan 1962 A
3177638 Johnson Apr 1965 A
3199604 Coby Aug 1965 A
3229454 Oshanyk Jan 1966 A
3404517 Whitfied et al. Oct 1968 A
3472008 Hurlburt Oct 1969 A
3545185 Dorsett et al. Dec 1970 A
3650096 Caldwell Mar 1972 A
3695015 Twidale et al. Oct 1972 A
3699751 Ross et al. Oct 1972 A
3714766 Ender et al. Feb 1973 A
3751888 James Aug 1973 A
3754383 Burrough et al. Aug 1973 A
3849974 James Nov 1974 A
3940910 D'Acremont Mar 1976 A
3983683 James Oct 1976 A
4084394 van der lely Apr 1978 A
4161859 Storm et al. Jul 1979 A
4167843 Kampman et al. Sep 1979 A
4184314 Hobbs Jan 1980 A
4240446 Raymond Dec 1980 A
4297833 Gaeddert Nov 1981 A
4353201 Pierce et al. Oct 1982 A
4359854 Witzel Nov 1982 A
4369590 Miller Jan 1983 A
4409780 Beougher et al. Oct 1983 A
4487004 Kejr Dec 1984 A
4495756 Greiner et al. Jan 1985 A
4658572 Honey et al. Apr 1987 A
4700535 Wessel Oct 1987 A
4738092 Jennings Apr 1988 A
4768334 Honey et al. Sep 1988 A
4793129 Ehrhart et al. Dec 1988 A
4896732 Stark Jan 1990 A
4903470 Hemker et al. Feb 1990 A
4910951 Reilly et al. Mar 1990 A
4928462 Lippens et al. May 1990 A
4981013 Underwood Jan 1991 A
4996833 Von Allowerden Mar 1991 A
5005342 Lundahl et al. Apr 1991 A
5007235 Nickel et al. Apr 1991 A
5107663 Wattron et al. Apr 1992 A
5111636 Quirin May 1992 A
5136828 Ermacora Aug 1992 A
5155986 Kelderman Oct 1992 A
5163277 Fransgaard Nov 1992 A
5177944 Finlay Jan 1993 A
5199249 Wattron et al. Apr 1993 A
5199250 Ermacora et al. Apr 1993 A
5203154 Lesher et al. Apr 1993 A
5231826 Jennings Aug 1993 A
5272860 Baril et al. Dec 1993 A
5297665 Smith Mar 1994 A
5394682 Frimml et al. Mar 1995 A
5423165 Walch et al. Jun 1995 A
5507139 Delperdang et al. Apr 1996 A
5566536 Krafka et al. Oct 1996 A
5911625 Von Allwörden Jun 1999 A
5964077 Guinn Oct 1999 A
5987861 Duncan et al. Nov 1999 A
6050075 Waldrop Apr 2000 A
6079194 Waldrop Jun 2000 A
6131379 Ehn, Jr. Oct 2000 A
6170244 Coers et al. Jan 2001 B1
6199703 Boese Mar 2001 B1
6205757 Dow et al. Mar 2001 B1
6212865 Peeters et al. Apr 2001 B1
6279304 Anstey et al. Aug 2001 B1
6401440 Franet et al. Jun 2002 B1
6442918 Fox Sep 2002 B1
6502379 Snider Jan 2003 B1
6591598 Remillard et al. Jul 2003 B2
6601375 Grahl et al. Aug 2003 B1
6658828 Franet Dec 2003 B2
6688093 Franet Feb 2004 B1
6697724 Beck Feb 2004 B2
6715274 Peeters et al. Apr 2004 B2
6758031 Franet Jul 2004 B2
6775969 Wuebbels et al. Aug 2004 B2
6843045 Bickel Jan 2005 B2
6862873 Franet Mar 2005 B2
6935488 Dow et al. Aug 2005 B2
6971225 Kempf et al. Dec 2005 B1
6978588 Kormann Dec 2005 B2
6986241 Beck Jan 2006 B2
7028459 Lohrentz et al. Apr 2006 B2
7051505 Brannstrom May 2006 B2
7070042 Dow et al. Jul 2006 B2
7107748 McClure Sep 2006 B2
7131253 Remillard et al. Nov 2006 B2
7204074 Bandstra et al. Apr 2007 B2
7207581 Osborne et al. Apr 2007 B2
7252169 McLean et al. Aug 2007 B2
7310929 Dow et al. Dec 2007 B2
7350343 Beck Apr 2008 B2
7404283 Viaud Jul 2008 B2
7448196 Schrag et al. Nov 2008 B2
7470082 Lloyd Dec 2008 B2
7478523 McClure et al. Jan 2009 B2
7526908 Rice et al. May 2009 B1
7543433 Hironimus Jun 2009 B2
7552577 Strosser Jun 2009 B2
7555883 Fackler et al. Jul 2009 B2
7574851 McLean et al. Aug 2009 B1
7594563 Lutz Sep 2009 B2
7603837 Ehrhart et al. Oct 2009 B2
7624561 McLean et al. Dec 2009 B2
7628004 Geiser Dec 2009 B2
7635299 Murray et al. Dec 2009 B2
7665287 Jones Feb 2010 B2
7669392 Ehrhart Mar 2010 B2
7673439 Geiser Mar 2010 B2
7703266 Fackler et al. Apr 2010 B2
7707811 Strosser May 2010 B1
7743594 Wanner et al. Jun 2010 B1
7814736 Blakeslee et al. Oct 2010 B2
7827774 Dow et al. Nov 2010 B2
8091331 Dow et al. Jan 2012 B2
8096102 Smith Jan 2012 B2
8156723 McClure et al. Apr 2012 B1
8186138 Dow et al. May 2012 B2
8863489 Landon et al. Oct 2014 B2
9038358 Landon et al. May 2015 B2
20030074876 Patterson et al. Apr 2003 A1
20030110752 Dow Jun 2003 A1
20040200203 Dow et al. Oct 2004 A1
20050172598 Billard Aug 2005 A1
20050210855 Bandstra et al. Sep 2005 A1
20060162308 Dow et al. Jul 2006 A1
20060248870 Geiser Nov 2006 A1
20060254238 Walter Nov 2006 A1
20060254240 Krone et al. Nov 2006 A1
20060254244 Geiser Nov 2006 A1
20070144130 Geiser Jun 2007 A1
20090139196 McLean et al. Jun 2009 A1
20090241503 Babler et al. Oct 2009 A1
20090282800 Gantzer Nov 2009 A1
20100037584 Dow et al. Feb 2010 A1
20110094200 Dow et al. Apr 2011 A1
20120247078 Landon et al. Oct 2012 A1
Foreign Referenced Citations (11)
Number Date Country
0 286 776 Oct 1988 EP
0 443 079 Aug 1991 EP
0 651 940 May 1995 EP
2 215 971 Oct 1989 GB
159252 Feb 1987 IT
01282454 Mar 1998 IT
01289646 Oct 1998 IT
01290202 Oct 1998 IT
2231242 Jun 2004 RU
WO 8706793 Nov 1987 WO
WO 9305641 Apr 1993 WO
Non-Patent Literature Citations (24)
Entry
New York Times, William Neuman, Amber Waves to Ivory Bolls, B1, Mar. 28, 2011 (New York, New York), 3 pages.
ROC America, Description RT 950, p. 1, http://www.roc.ag/Pagine/1600/EN/RT—950.htm?idguida=3 (last visited Dec. 17, 2010), 2 pages.
Art's Way Manufacturing Co., Inc., Welcome to Art's Way Manufacturing Co., Inc., p. 1, Armstrong, IA, http://www.artsway-mfg.com/ (visited Dec. 17, 2010), 1 page.
Praktijk Mechanisatie, Snel schud-/harksysteem, p. 32 (Jul. 21, 2000) with English translation (2 pages), 3 pages.
Monosem, Inc., Lit Sheets and Brochures, p. 1-2, http://www.monosem-inc.com/lit.sheets.html (visited Feb. 15, 2011), 2 pages.
Monosem, Inc., Stacker Bar Mounted NG Plus 4 Operator and Parts Manual, Chapter 3—3.1 to 3.14, 2009 (Edwardsville, KS), 16 pages.
John Deere, Inc., 1720 Integral Stack Fold Planter, Moline, IL, p. 1-2, http://www.deere.com/servlet/ProdCatProduct?pNbr=1720RH&tM=FR (visited Feb. 15, 2011), 2 pages.
John Deere, Inc., 637 Three-Section & Five-Section Tandem Disks, Moline, IL, p. 1-2, http://www.deere.com/servlet/ProdCatProduct?tM=FR&pNbr=0637XN (visited Feb. 15, 2011), 2 pages.
John Deere, Inc., 2410 Chisel Plow, Moline, IL, p. 1-2, http://www.deere.com/servlet/ProdCatProduct?tM=FR&pNbr=2410XN (visited Feb. 15, 2011), 2 pages.
John Deere, Inc., 512 Disk Ripper, Moline, IL, p. 1-2, http://www.deere.com/servlet/ProdCatProduct?tM=FR&pNbr=0512XN (visited Feb. 15, 2011), 2 pages.
John Deere, Inc., 770 SPFH Corn Head, p. 1, Moline, IL, http://www.deere.com/servlet/ProdCatProduct?tM=FR&pNbr=0770—KM (visited Feb. 15, 2011), 1 page.
Case IH, 1200 Series Advanced Seed Meter Planters(brochure), p. 1, 18, Racine, WI, available at http://www.caseih.com/en—us/Products/PlantingSeeding/Pages/1200-planters.aspx (click link 1200 Series Planter Brochure) (visited Feb. 15, 2011), 2 pages.
Case IH, NPX2800 Fertilizer Applicators (brochure), p. 1-6, Racine, WI, available at http://www.caseih.com/en—us/Products/Application/Pages/fertilizer-applicators.aspx (click link NPX2800 Fertilizer Applicators Brochure) (visited Feb. 15, 2011), 6 pages.
Case IH, Seedbed Conditioners (Crumbler 110 and 160), p. 1, Racine, WI, http://www.caseih.com/en—us/Products/Tillage/Pages/seedbed-conditioners.aspx (visited Feb. 15, 2011), 1 page.
Agco, Inc., 8700 Stacker Toolbar Planter, p. 1, Russell, KS, http://www.agcoiron.com/default.cfm?PID=1.25.9.2 (visited Feb. 15, 2011), 1 page.
Agco, Inc., 8700 Rigid & Vertical Fold Planters, p. 1, Russell, KS, http://www.agcoiron.com/default.cfm?PID=1.25.9.1 (visited Feb. 15, 2011), 1 page.
Orthman Manufacturing Inc., Stacking Toolbars, p. 1, Lexington, NE, http://www.orthmanag.com/products/stacking-toolbars (visited Feb. 15, 2011), 1 page.
Orthman Manufacturing Inc., Folding Toolbars, p. 1, Lexington, NE, http://www.orthmanag.com/products/folding-toolbars (visited Feb. 15, 2011), 1 page.
Harvestec, Harvestec Folding Corn Heads, p. 1, Oakville, Ontario, Canada, http://www.harvestec.com/Products03.html (visited Feb. 15, 2011), 1 page.
CLAAS of America Inc., Orbis, p. 1-2, Omaha, NE http://www.claas.com/countries/generator/cl-pw/en/claas-US/products/fh/jaguar900series/attachment/orbis/start,lang=en—US.html (visited Feb. 15, 2011), 2 pages.
Krone NA Inc., Big X 700/850/1100 Brochure, p. 13, Memphis, TN, available at http://www.krone-na.com/BiGX—700—850—1100.pdf (visited Feb. 15, 2011), 2 pages.
Art's Way Manufacturing Co., Inc., Land Planes, p. 1-2, Armstrong, IA, http://www.artsway-mfg.com/products/land-planes/land-planes-product-and-information/ (visited Feb. 15, 2011), 2 pages.
Application and File history for U.S. Appl. No. 13/075,766, filed Mar. 30, 2011. Inventors: Gregory L. Landon et al.
Application and File history for U.S. Appl. No. 14/096,594, filed Dec. 4, 2013. Inventors: Gregory L. Landon et al.
Related Publications (1)
Number Date Country
20150327428 A1 Nov 2015 US
Divisions (1)
Number Date Country
Parent 13075766 Mar 2011 US
Child 14096594 US
Continuations (1)
Number Date Country
Parent 14096594 Dec 2013 US
Child 14720176 US