This application is the U.S. National Stage of PCT/FR2017/052847, filed Oct. 17, 2017, which in turn claims priority to French Patent Application No. 1660036 filed Oct. 17, 2016, the entire contents of all applications are incorporated herein by reference in their entireties.
The invention relates to a glazing, in particular a windshield, allowing image-data to be captured in a motor vehicle in association with a camera system of the ADAS (Advanced Driver Assistance System) type. The invention also describes a device combining said glazing (said windshield) and said camera for such a capture of information.
Automotive glazings and the associated technology are constantly evolving, in particular in order to improve safety. Advanced driver assistance systems (or ADAS) are an important innovation. According to the general principle, cameras placed behind the windshield allow these ADAS to assist the driver while he is driving. Such an ADAS device may in particular have the following functions, the list below not being exhaustive:
Most conventionally, the device comprises at least one camera placed behind the windshield of the vehicle. In present-day versions of such devices, there is a problem with bulk. Specifically, the space available on the front glazing of a vehicle for such devices is very limited because they must not obstruct the view of the driver, for obvious safety reasons. Such a zone 100, sometimes called Y0 in the field, is conventionally located in the upper central portion of the windshield as indicated in the appended
Practically, regarding the windshield, on account of the size of the objective, of the sensor of the camera and of its housing, for each camera to be able to see a suitable field of view it is therefore necessary, for each of said cameras, for the collected exterior beam (or rather all of the beams collected in a pre-set solid angle) to pass through a specific window 101 of trapezoidal shape on the windshield, such as illustrated by the appended
Such a configuration furthermore implies the use of a black coating 102, such as a layer of black lacquer or enamel, on all the area of the glazing placed facing the device incorporating the ADAS camera, including its housing, so as to hide the latter.
Furthermore, if a plurality of cameras are associated, for example in order to provide a plurality of functions such as described above, or even for a reconstruction and/or an analysis in a (stereoscopic) three-dimensional mode, it in addition proves to be necessary to separate the various trapezoidal zones corresponding to each camera from one another, as illustrated in
The aim of the present invention is to provide a solution allowing the problems described above to be solved and in particular allowing the problems of bulk described above to be avoided, in particular by decreasing the black area that is present on the windshield to isolate or mask the ADAS cameras present behind the glazing.
In particular, the preceding problem has been able to be solved by modifying the orientation of the optics of the camera so as to tilt the latter by an angle β toward the vertical.
More precisely, the present invention relates to a laminated motor-vehicle windshield comprising two glass sheets, an exterior glass sheet and an interior glass sheet, which sheets are joined together by an interlayer made of a thermoplastic of refractive index n1, wherein said windshield is equipped with a through-hole that passes through at least one of said glass sheets and preferably through said interlayer and wherein said hole is filled with an optical device that is suitable for deviating a light beam incident substantially horizontally on the face of the windshield which is exposed to the exterior of the vehicle and for making it converge, substantially without deformation, on an image-capturing device of a camera, such as a CCD or CMOS detector, placed facing that face of the windshield which is turned toward the passenger compartment of the vehicle, the surface of said detector being arranged substantially parallelly to the surface of said windshield.
The expression “substantially horizontally” is understood, by way of example, to mean that the angle made between the ground and the rays of the light beam is smaller than 30° and in particular is smaller than 20°, or even indeed smaller than 10°.
The expression “substantially parallelly” is understood, by way of example, to mean that the angle made between the internal surface of the windshield and the detecting area of the surface of the CCD detector is smaller than 30°, and in particular is smaller than 20° or indeed is smaller than 10°.
Certain advantageous but nonlimiting embodiments of the present invention are described below, which may of course be combined with one another where needs be:
The invention also relates to a device for capturing, through a windshield, images issued from a zone of capture of light radiation incident substantially horizontally on that face of a windshield which is exposed to the exterior of the vehicle, said device being characterized in that it comprises a camera, in particular an ADAS camera, comprising an image sensor and a windshield such as described above, and wherein the surface of the image sensor of the camera is arranged substantially parallelly to the surface of said windshield.
More particularly,
In this figure, a sagittal cross-sectional plane of a laminated glazing has been shown. An initial light beam 3 is incident from the exterior environment of the vehicle, on the face of the glass sheet 4 that is the most external of the windshield, and in particular from the zone of the road that it is desired to observe with a camera, which has been schematically shown only by its sensor 7 in
By light beam, what is meant in the context of the present invention is all the light rays arriving in a certain solid angle and that it is sought to capture via the camera 7. In
As illustrated in
As indicated above with reference to
The glazing 1 shown in
In the interlayer 6, in that zone of the glazing which is located in the final positional region desired for the camera, a cut-out is formed in the windshield, so as to produce a hole 8 of sufficient and necessary size to make it possible to insert therein an optical device 2 according to the invention, the thickness of which is substantially identical to that of the windshield.
The device 2 described in
As also explained above, such a configuration allows, in this way, the dimensions of the trapezoidal zone passed through by the beam on the windshield and therefore, in the end, the total area of the black zone 102 printed on the glazing, to be very greatly limited. By way of example, it is possible to calculate that a tilt β of only 5° of the camera allows the area of said trapezoidal zone to be decreased by more than 50%. Thus, in
According to the invention, it therefore becomes possible to greatly limit the area of the black zone printed on the windshield or alternatively to place a higher number of cameras in the accessible zone of the windshield, in particular with a view to achieving stereoscopy or even in order to increase the number of points of the road monitored and/or the number of functions such as described above.
More precisely, as illustrated in
This thermoplastic of index n2 is more particularly chosen from plastics that have properties allowing adhesion to plastic or glass surfaces.
In particular, the material 12 is advantageously and preferably chosen in such a way that its refractive index n2 is significantly lower than that of the material from which the interlayer sheet 6 is made. By significantly lower, what is meant is an index difference of at least 0.05 and preferably of at least 0.1.
In particular and for example, if the material 6 is a thermoplastic of the PVB type, the refractive index of which is about 1.48, the material chosen for the material of index n2 may advantageously be chosen from acrylate polymers, in particular optionally fluorinated, aliphatic urethane acrylate polymers, the refractive index of which may vary between 1.31 and 1.42 depending on the formulation. Such adhesives polymers are for example sold by Nordland under the references NOA 1315, NOA 132, NOA 1327, NOA 1328, NOA 133, NOA 13685, NOA 1375, NOA 138, NOA 142.
The dimensions of the cut-out section 8 are normally small, considered with respect to the area of the windshield or of the glazing.
The shape and the dimensions of the cut-out section 8 are also configured, according to prior-art techniques, to effectively and selectively collect all of the incident light radiation that a) passes through the windshield, b) is contained in an exterior (to the vehicle) solid-angle range, and c) originates from the zone, in front of the vehicle, that it is sought to capture via the camera.
Number | Date | Country | Kind |
---|---|---|---|
16 60036 | Oct 2016 | FR | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/FR2017/052847 | 10/17/2017 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2018/073528 | 4/26/2018 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
6132882 | Landin et al. | Oct 2000 | A |
20170064175 | Furutake | Mar 2017 | A1 |
20190061482 | Kikuchi | Feb 2019 | A1 |
Number | Date | Country |
---|---|---|
103 33 978 | Feb 2005 | DE |
10 2008 014089 | Sep 2009 | DE |
102008014089 | Sep 2009 | DE |
0 934 851 | Aug 1999 | EP |
2 120 025 | Nov 2009 | EP |
2 390 141 | Nov 2011 | EP |
WO 2016143582 | Sep 2016 | WO |
Entry |
---|
Machine translation of DE102008014089 (Year: 2008). |
International Search Report as issued in International Patent Application No. PCT/FR2017/052847, dated Dec. 19, 2017. |
Number | Date | Country | |
---|---|---|---|
20200047689 A1 | Feb 2020 | US |