The invention concerns a windscreen wiper device.
Numerous windscreen wiper devices with a four-bar linkage are known, for example from DE 44 44 066, which feature a wiper arm, which is held on two coupling points by two cranks and driven, thereby executing a stroke/rotating movement. These windscreen wiper devices feature a wiper arm, which is composed of an articulated part to which a wiper blade is linked. The articulated part is connected to a fastening part, which is fastened to the usual windscreen wiper device by means of two cranks. In this arrangement, one of the two cranks is driven causally in a pendulum or rotating fashion by a drive unit, thereby producing a rotating movement along a circular arc section for the wiper arm. In order to generate a stroke of the wiper arm, the second crank is fastened on the wiper device or on the vehicle body so that it can rotate, and is not driven, which is the reason why it is frequently designated as a guide crank since it takes the fastening part only one degree of freedom into the movement. The strokes in this process are very limited, which is disadvantageous in the case of large windows since the wiper arm can advance into the passenger-side corner of the windscreen in only a very limited way.
The windscreen wiper device of the invention has the advantage that greater strokes of the windscreen wiper arm can be generated and therefore improved vision can be achieved for the driver of the vehicle.
This is achieved by a wiper arm with a wiper blade being fastened so that it can move in a rotating fashion at a first coupling point by means of a first crank and at a second coupling point by means of a second crank and the cranks being linked at two different coupling points on the windscreen wiper device or the vehicle body. In this connection, the windscreen wiper device features means with which the distance between the two coupling points of the crank on the wiper arm can be modified during a wiping cycle.
It is especially advantageous if the distance between the coupling points can be modified as a function of the position of the wiper arm in order to adapt the wiper field of the windscreen wiper device optimally to requirements, in particular to be able to the adjust the stroke of the wiper arm in such a way that it can advance as far as possible into the upper passenger-side corner of the windscreen.
In this connection, it shall be viewed as especially advantageous if the means are embodied as a rectilinear sliding joint in order to guarantee low-noise and low-wear operation.
If both cranks are driven at least causally in a pendulum fashion, the stroke between the two coupling points does not have to be controlled separately. This is advantageous especially if both cranks are connected by means of a thrust rod and therefore the movement of the one, directly driven crank is transmitted to the second crank without having to use additional drive elements.
If at least one crank features a bend in the area in which the thrust rod is linked, the windscreen wiper device can be housed in the vehicle in a particularly space-saving manner since it requires only a little construction space beneath the windscreen wiper device of the vehicle.
Furthermore, it is advantageous if the wiper arm features an articulated part and a fastening part and the coupling points are arranged on the fastening part. In this way, the articulated part can be swung down from the fastening part as is generally common, thereby making it easier and quicker to change the wiper blade.
It is especially advantageous if in operation the wiper arm executes a rotational movement around a rotational axis and the rotational axis of the wiper arm is approximately perpendicular to the surface that is covered by the wiper arm/blade at a minimum of one, preferably at both coupling points.
The invention also provides a windscreen wiper device with a wiper arm, which is fastened so that it can move in a rotating fashion at a minimum of one first coupling point and at a second coupling point that is different from the first coupling point at a minimum of two cranks, whereby at least two cranks are casually shifted by a drive unit at least into a pendulum movement, advantageously features a low construction height without increasing costs as compared with a conventional windscreen wiper device. In addition, the surface being covered by the wiper blade can be better adjusted to the window as a result. Moreover, the development of noise from the gear of the windscreen wiper device can be reduced to a minimum.
It is especially advantageous in this connection if the two cranks are connected to one another via a thrust rod and feature a bend at which the thrust rod is linked.
An exemplary embodiment of the invention is depicted in the drawings and explained in greater detail in the following description. They show the following:
a The working range between the parked and extended positions of a windscreen wiper device in accordance with the invention in the same direction of rotation.
b The working range between the extended and reverse positions in the opposite direction of rotation.
The gear 14 features a first crank 30, which is directly driven causally by the drive unit 12 and is linked on the end of the fastening part 21 that faces away from the articulated part and a second crank 32, which is linked to a fixed point of the wiper device, on the one hand, and to a fastening part 21 of the passenger-side wiper arm 18, on the other. The first crank 30 is thus fastened so that it can move in a rotating fashion at the end of the wiper arm 18 facing away from the wiper blade at a first coupling point A and the second crank 32 at a second coupling point B that is different from the first coupling point A.
A schematic representation of the gear 14 of a windscreen wiper device 10 in accordance with the invention is shown in
Connected tightly to the first crank 30 is a first rectangular lever 36, which in operation moves along with the first crank 30 via the first crank's drive. Linked to this first rectangular lever 36 is a thrust rod 38, which moves a second rectangular lever 40 that is connected tightly to the second crank 32. Through this rectangular level the second crank 32 is moved causally in just the same way via the drive unit 12. The position of the gear 14 shown here corresponds to the parked position.
a shows the same device as in the preceding figures. The characteristic line 42 shows the movement of the wiper arm between the parked and the extended position, i.e., in the range during which the first crank 30 describes the same rotational direction as the second crank 32.
To do this, the first crank 30 and the second crank 32 feature a first bend 44 and a second bend 46 on the coupling points of the thrust rod 38. The gear 14 is shown here in the parked position, which essentially corresponds to the lower, reverse position.
In principle, the most varied combinations of the features described here are possible, for example, the rectilinear sliding joint 34 can go beyond the second coupling point B in the direction of the wiper blade 22 so that the second coupling point B is arranged in the center of the longitudinal extension of the rectilinear sliding joint 34 for example. It is also possible to drive the two cranks 30, 32 causally each with the aid of a motor or to drive the second crank 32 via the first crank 30 with the aid of a gearwheel, chain gear or a cable gear instead of using the thrust rod 38. In another variation, the second crank 32 can also be provided without a drive, if the distance between the coupling points A and B are controlled, e.g., hydraulically or pneumatically, by the rectilinear sliding joint 34.
Number | Date | Country | Kind |
---|---|---|---|
101 59 052 | Nov 2001 | DE | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/DE02/02396 | 7/2/2002 | WO | 00 | 7/29/2003 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO03/047929 | 6/12/2003 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
2915772 | Ziegler | Dec 1959 | A |
4707876 | Carducci | Nov 1987 | A |
5369837 | Chevroulet | Dec 1994 | A |
Number | Date | Country |
---|---|---|
37 33 620 | Apr 1989 | DE |
42 29 992 | Mar 1993 | DE |
0 148 420 | Jul 1985 | EP |
0406096 | Jan 1991 | EP |
0537059 | Apr 1993 | EP |
58-159073 | Sep 1983 | JP |
10-258707 | Sep 1998 | JP |
Number | Date | Country | |
---|---|---|---|
20040111819 A1 | Jun 2004 | US |