The invention relates to a windscreen wiper drive arrangement.
A windscreen wiper drive arrangement is known from DE 299 01 686 U1 comprising a drive motor which is connected via an output shaft to a gear mechanism arranged in a gear mechanism housing. Guided out of the gear mechanism housing is a drive shaft for a windscreen wiper which is driven in an oscillating manner. Conventionally, the drive shaft is guided through an opening in the bodywork or a window, generally the rear window. To avoid water ingress, conventionally a protective sleeve is provided through which the drive shaft is guided in the axial direction. Said protective sleeve is sealed relative to the drive shaft by means of an internal sealing element, for example an O-ring, so that no water is able to run toward the interior along the drive shaft. Moreover, the protective sleeve is sealed by means of an external sealing element, in particular a so-called grommet, relative to the vehicle component through which the drive shaft is guided. It is known to press the protective sleeve provided with an internal cone onto an external cone of the gear mechanism housing, in particular a fixing dome, in the axial direction and thus to produce a non-positive connection between the gear mechanism housing and the protective sleeve.
Such a fastening of the protective sleeve has proved advantageous. As a result of external influences, in particular as a result of continuous shaking movements during travel or during repair work, however, the frictional connection between the protective sleeve and the gear mechanism housing may be released, which may result in the protective sleeve being able to move in the axial direction and/or in the peripheral direction. As a result, firstly there is the risk that the protective sleeve during operation of the windscreen wiper moves in an oscillating manner together with the drive shaft, which leads to greater wear of the internal sealing element. Moreover, the protective sleeve may become skewed such that an effective seal relative to the drive shaft and/or relative to the vehicle component, through which the drive shaft is guided, is no longer ensured. It leads to water ingress, in particular into the gear mechanism and/or motor housing and thus to increased occurrence of wear and an electrical short circuit.
The object of the invention is to provide an improved wiper drive arrangement in which the risk of failure of the seal is minimized.
The idea underlying the invention, additionally or alternatively to pressing the protective sleeve onto a gear mechanism housing portion, i.e. an exclusively non-positive and/or frictional connection, is to provide a positive connection between the protective sleeve and the gear mechanism housing and/or a separate fixing element for fixing the protective sleeve to the gear mechanism housing, in order to avoid a relative axial movement of the protective sleeve in relation to the gear mechanism housing in the direction of the vehicle component and/or in the peripheral direction. By the additional or alternative securing means for the frictional connection, increased wear of the seal, in particular between the protective sleeve and drive shaft, may advantageously be avoided, as the protective sleeve always maintains a precisely defined position relative to the sealing elements and the drive shaft. An inadvertent release of the protective sleeve from said defined relative position is advantageously avoided. Due to the provision of a positive connection and/or a separate fixing element, substantially greater moments may be absorbed and/or cushioned by the protective sleeve.
In principle, various possibilities exist for ensuring an additional or alternative securing and/or fixing of the protective sleeve to the gear mechanism housing.
According to an advantageous embodiment of the invention, the protective sleeve and a portion of the gear mechanism housing, preferably a fixing dome of the gear mechanism housing, engage in a mutually interlocking manner. As a result of this positive connection, a rotation of the protective sleeve relative to the gear mechanism housing is avoided. In addition to this securing against a movement in the peripheral direction, the protective sleeve may be secured against an axial movement. To this end, the axial fixing may, for example, be produced by a further positive connection of the protective sleeve with the gear mechanism housing. A support of the protective sleeve in the axial direction on a component supported on the drive shaft, in particular a speed nut, or a radial portion configured integrally with the drive shaft is also conceivable.
Additionally or alternatively, in a development of the invention it is provided to latch the protective sleeve to the gear mechanism housing. In this connection, the at least one latching mechanism may be configured such that it secures the protective sleeve exclusively against a relative axial movement or exclusively against a rotational movement relative to the gear mechanism housing. Preferably, however, the protective sleeve is latched to the gear mechanism housing such that both degrees of freedom are eliminated.
According to a preferred embodiment, it is provided that the latching means are arranged for fixing the protective sleeve to the gear mechanism housing on a latching arm of the protective sleeve facing in the direction of the gear mechanism housing. For example, the latching arm, preferably at its free end, comprises a recess which engages in a latching lug of the gear mechanism housing. It is also conceivable to transpose the latching lug and the recess.
A particularly secure and fixed connection between the protective sleeve and the gear mechanism housing is maintained when the protective sleeve is calked to the gear mechanism housing. To this end, the protective sleeve preferably comprises at least one opening through which an extension of the gear mechanism housing, generally consisting of cast aluminium, projects. After positioning the protective sleeve, the extension, in particular by the effect of impact, is widened at its free end such that the protective sleeve may no longer be pulled off the extension. As a result of the calking, the protective sleeve is secured both in the axial and in the peripheral direction.
Additionally or alternatively, it is advantageous to rivet the protective sleeve to the gear mechanism housing by means of individual rivets.
In a development of the invention, it is advantageously provided to secure the protective sleeve on the gear mechanism housing by means of a double-locking speed nut. A double-locking speed nut comprises resilient elements both on its internal periphery and on its external periphery, which is under tension with and/or bites into the gear mechanism housing, in particular the fixing dome, on the one hand, and, on the other hand, the protective sleeve.
Further advantages and expedient embodiments may be derived from the further claims, the description of the figures and the drawings, in which:
The same components and components with the same function are identified in the figures by the reference numerals.
In
The drive shaft 4 is passed out of the gear mechanism housing 3 and/or the fixing dome 10 and at a distance thereto through a vehicle component 11, in particular a bodywork panel or a window pane. To this end, an opening 12 is provided in the vehicle component 11.
So that from the outside 13 of the vehicle no water is able to penetrate in the direction of the gear mechanism 2, a protective sleeve 15 is provided with circular internal and external cross-sectional surfaces. The protective sleeve is pressed with its conically widened end region 16 onto the conically tapered fixing dome 10 in the axial direction in the direction of the vehicle component 11. In a groove 17 on the internal periphery of the protective sleeve 15 an internal sealing element 18, configured as an O-ring, is arranged. Said O-ring bears against the entire periphery of the drive shaft 4 and prevents penetration of water from the outside 13 into the interior of the protective sleeve 15. With an oscillating movement of the drive shaft 4, said drive shaft slides along the internal periphery of the internal sealing element 18. In order to prevent water ingress between the external periphery of the protective sleeve 15 and the opening edge of the opening 12 in the direction of the gear mechanism housing 3, an external sealing element 19 is provided inside the opening 12, in particular a grommet held on the peripheral edge of the opening 12. Said sealing element bears sealingly against the external periphery of the protective sleeve 15.
Should the frictional connection between the fixing dome 10 and the internal periphery of the protective sleeve 15 be released, rotation of the protective sleeve 15 in the peripheral direction is avoided by the positive connection between the protective sleeve 15 and the fixing dome 10.
The positive connection between the protective sleeve 15 and the fixing dome 10 is shown in detail in
Additionally or alternatively, radially outward facing teeth 21 which extend in the axial direction and are spaced apart on the external periphery of the fixing dome 10 in the peripheral direction, are provided and engage in recesses of complementary shape, not shown, on the internal periphery of the protective sleeve 15. As a result of the interlocking of the protective sleeve 15 with the fixing dome 10, a relative rotational movement between the protective sleeve 15 and the gear mechanism housing 10 is advantageously avoided. The pressing-on merely has the function of securing the protective sleeve 15 against axial displacement. If the pressing-on is eased, the protective sleeve may not rotate but may be axially displaced in the direction of the vehicle component 11. If required, the pressing-on may be entirely dispensed with, in particular when an axial displacement movement is prevented by a positive connection or a separate fixing element.
It is also conceivable that the two sets of teeth 20, 21 shown in
In
In the embodiment shown in
In the embodiment according to
In
Number | Date | Country | Kind |
---|---|---|---|
20 2006 019 860 U | Mar 2006 | DE | national |
10 2006 013 961 | Mar 2006 | DE | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/EP2007/052779 | 3/23/2007 | WO | 00 | 8/8/2008 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2007/110382 | 10/4/2007 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
3790985 | Kessler | Feb 1974 | A |
4428533 | Pietryk et al. | Jan 1984 | A |
5634726 | Edele et al. | Jun 1997 | A |
5986371 | Savy et al. | Nov 1999 | A |
6318735 | Lambeth | Nov 2001 | B1 |
7989995 | Reith et al. | Aug 2011 | B2 |
20030213087 | Moein et al. | Nov 2003 | A1 |
20050140224 | Weigold et al. | Jun 2005 | A1 |
Number | Date | Country |
---|---|---|
2000-071941 | Mar 2000 | JP |
20071941 | Mar 2000 | JP |
2001-225726 | Aug 2001 | JP |
9604156 | Feb 1996 | WO |
0046082 | Aug 2000 | WO |
Entry |
---|
Machine language translation of description portion of JP 2000-71941, published Mar. 2000. |
PCT/EP2007/052779 International Search Report. |
Number | Date | Country | |
---|---|---|---|
20090094774 A1 | Apr 2009 | US |