The invention generally relates to detecting moisture on a windshield, and more particularly relates using an isolated electrode coupled to the windshield to detect moisture on the windshield.
Rain sensors have been developed to detect the presence of moisture (e.g., rain or other condensation) on a vehicle windshield, and to turn on and off wipers, as necessary, when such moisture is detected. Automatically detecting rain, sleet, fog, and the like, and taking appropriate action for example, turning on/off wiper blades at a proper speed potentially reduces distractions to the driver, allowing the driver to better concentrate on the road ahead. However, inappropriate operation of the wipers such as failing to actuate wipers when moisture is present may also create hazardous conditions. Moreover, such systems are also susceptible to “dirt” distractions which may cause a false moisture detection when the problem is actually dirt is on the windshield.
Some rain sensors are optical based devices. Optical based devices are considered to be relatively expensive and have relatively large package sizes that may undesirable obstruct a vehicle operator's field of view when mounted adjacent a vehicle windshield. Other problems associated with such optical sensors are well summarized in United States Patent Application Number 2007/0162201 by Veerasamy, published on Jul. 12, 2007, the entire contents of which is hereby incorporated by reference herein.
In accordance with one embodiment of this invention, a system for detecting moisture on a windshield is provided. The system includes an isolated electrode and a controller. The isolated electrode is coupled to a windshield. The isolated electrode is configured to exhibit an electrical impedance indicative of moisture present on a surface the windshield. The controller is in electrical communication with the isolated electrode. The controller is configured to determine an electrode impedance value corresponding to the electrical impedance exhibited by the isolated electrode for detecting moisture on the windshield.
In another embodiment of the present invention, a controller for use in a windshield moisture detection system that includes a single isolated electrode configured to exhibit an electrical impedance indicative of moisture present on a windshield is provided. The controller includes an impedance determination circuit and an activation signal output. The impedance determination circuit is configured to determine the electrical impedance of the isolated electrode. The activation signal output is configured to output an activation signal when the electrical impedance indicates a moisture presence.
In yet another embodiment of the present invention, a method for detecting moisture on a windshield is provided. The method includes the step of providing an isolated electrode coupled to a windshield. The isolated electrode is configured to exhibit an electrical impedance indicative of moisture present on a surface of the windshield. The method also includes the step of determining an electrode impedance value corresponding to the electrical impedance exhibited by the isolated electrode for detecting moisture on the windshield.
Further features and advantages of the invention will appear more clearly on a reading of the following detailed description of the preferred embodiment of the invention, which is given by way of non-limiting example only and with reference to the accompanying drawings.
The present invention will now be described, by way of example with reference to the accompanying drawings, in which:
The system 10 may include an isolated electrode 16 coupled to the windshield 12. The isolated electrode 16 is generally configured to exhibit an electrical impedance or field impedance that may be indicative of moisture present on a surface the windshield 12. As used herein, the word isolated used with regard to an electrode means that the isolated electrode 16 is used separate and independent from any return electrode. There are numerous examples of rain detection systems that use pairs of electrodes to project an electric field through a windshield, such as United States Patent Application Number 2007/0162201 by Veerasamy, published on Jul. 12, 2007, and WIPO Publication number WO2001/89131 by Netzer, published Nov. 1, 2001. In contrast, the system 10 described herein detects moisture on a windshield using only a single electrode, and so is distinguished from the publications cited above that use pairs of electrodes. As such, an isolated electrode is not comparable to any electrode pair or non-isolated plurality of electrodes where any one or more of the electrodes is used to provide a return path for an electric field emitted by an isolated electrode 16. Using an isolated electrode 16 is advantageous because only a single wire 18 is necessary to connect the isolated electrode 16 to a controller 20, and so cost is reduced. Testing has demonstrated that the system 10 is able to distinguish instances when the windshield 12 is dry from instances when water is present on the windshield 12.
The isolated electrode 16 may be formed of a material that is electrically conductive. The non-limiting example in
The controller 20 may include a reference impedance device 24 that may be characterized as having a reference impedance value ZR. For example, the reference impedance device 24 may be a capacitor, resistor, inductor, or combination of these and other components that exhibit a reference impedance value ZR. The reference impedance device 24 may be electrically coupled to the isolated electrode 16 by a wire 18 to form a network 26. For the purpose of explanation and not limitation, the reference impedance device 24 may be characterized as defining a reference output 28 in electrical contact with the isolated electrode 16, and defining a reference input 30 in electrical contact with a signal generator 32. The signal generator 32 is generally configured to output an excitation signal VI on the reference input 30, for example a sinusoidal signal characterized as having a frequency and magnitude. In response to the excitation signal VI, an isolated electrode signal VO may arise that may be detected or measured by a voltage detector 34. The combination of the signal generator 32, the reference impedance device 24, and the voltage detector 34 form a non-limiting example of an impedance determination circuit that may be used for determining electrode impedance value ZE.
The reference impedance device 24 is typically formed of only linear passive components, e.g. capacitors, resistors, and inductors, and the excitation signal in one embodiment is a sinusoidal type signal. Then, in response to an excitation signal VI being applied, an isolated electrode signal VO may occur on the isolated electrode 16 that may be useful for determining the electrical impedance ZE exhibited by the isolated electrode 16. For this example of the reference impedance device 24 being formed of linear components, and a sinusoidal excitation signal VI, the electrical impedance ZE of the isolated electrode may be calculated using a formula such as
ZE=VO*ZR/(VI−VO) Equation 1
where the variables may be complex numbers, or in some cases may be simplified to be based on voltage magnitudes and simple component characteristic values such as capacitance.
If the excitation signal VI is sinusoidal, then the excitation signal VI may be characterized as having an excitation magnitude VIM and an excitation frequency VIF. Similarly, the isolated electrode signal VO may be characterized as having an isolated electrode magnitude VOM generated in response to the excitation signal VI, and an isolated electrode frequency VOF equal to the an excitation frequency VIF. If the reference impedance value ZR is known, and the excitation signal VI is known, the controller 20 may be configured to determine the electrode impedance value ZE based on a measurement of the isolated electrode signal VO by the voltage detector 34. The controller 20 may also be configured to determine if the electrode impedance value ZE is indicative of a moisture presence on a surface of the windshield 12, for example by comparing the electrode impedance value ZE to a threshold or using a look-up table stored in the processor 22.
Some configurations of the isolated electrode 16 may exhibit an electrode impedance value ZE that is predominately capacitive. For such an isolated electrode, the overall configuration of the controller may be simplified by using only a reference capacitor CR as the reference impedance device 24, as suggested in
In another embodiment the reference impedance device 24 may be formed by a combination of an inductor and a capacitor (not shown) having values selected so that the reference impedance device 24 cooperates with the isolated electrode 16 to form a network 26 that is a resonant circuit having a resonant frequency. With such an arrangement, the said controller 20 may be configured to vary or sweep the excitation frequency VIF in order to determine a resonant frequency of the resonant circuit. Then since the values of the inductor and capacitor are fixed, the electrode impedance value ZE may be determined by calculation or by a look-up table.
The system 10 may include a vehicle windshield wiper module 36 configured to receive an activation signal 38 from the controller 20 for activating vehicle windshield wipers 14 to wipe the vehicle forward windshield 12. For example, the activation signal 38 may come from an activation signal output in the processor 22 configured to output an activation signal 38 to the windshield wiper module 36 when the electrode impedance value ZE is indicative of a moisture presence. With such an arrangement the windshield wipers 14 may only be activated if there is sufficient moisture on the windshield 12 to warrant wiping, and so avoid a situation where the vehicle operator is constantly adjusting the wiper control during variable weather conditions, or the vehicle operator has to quickly activate the wipers if an unexpected splash from another vehicle soaks the windshield 12.
The system 10 may include a window/sunroof control module 50 configured to receive an activation signal 52 from the controller 20 for activating powered windows and/or a powered sunroof to prevent moisture from entering the vehicle interior. Such a system may periodically check for moisture, and then automatically close the vehicle's windows or the vehicle's sunroof is rain is detected.
An alternative arrangement that avoids having to open the switches 42A, 42B in order to determine the electrode impedance value ZE is to include a common mode choke 46 in the heater circuit 40 as illustrated in
The system may include a second electrode (not shown) coupled to the windshield 12, for example a second sheet of copper foil similar to the isolated electrode shown in
Step 420, PROVIDE REFERENCE IMPEDANCE DEVICE, may include providing a reference impedance device 24, and may include coupling a reference output 28 of the reference impedance device 24 to the isolated electrode 16 to form a network 26. The reference impedance device 24 may be characterized as having a reference impedance value ZR.
Step 430, APPLY EXCITATION SIGNAL, may include applying an excitation signal VI on a reference input 30 of the reference impedance device 24 in order to generate an electrode signal VO on the isolated electrode 16, wherein the electrode signal VO is indicative of the electrical impedance, in particular the electrode impedance value ZE.
Step 440, DETERMINE ELECTRODE IMPEDANCE VALUE, may include a controller 20 determining an electrode impedance value ZE corresponding to the electrical impedance exhibited by the isolated electrode 16 for detecting moisture on the windshield 12.
Accordingly, a system 10, a controller 20 and a method 400 for detecting moisture on a windshield is provided. A single, isolated electrode 16 is used to detect moisture, and so is simpler and less expensive than other systems that have at least one electrode providing a return path for another electrode. Also, a way to use the isolated electrode 16 for both detecting moisture on the windshield, and heating the windshield is described herein.
While this invention has been described in terms of the preferred embodiments thereof, it is not intended to be so limited, but rather only to the extent set forth in the claims that follow.