The invention relates to a windshield washer fluid heating system; more particularly, a radiator shroud having a windshield washer container with an integrated heat conductive element for capturing waste heat from a radiator.
In a typical automobile having an internal combustion engine, the windshield washer container is located within the engine compartment. The windshield washer solution is typically not heated. It is desirable for the windshield washer solution to be heated, because for every 10° C. rise in temperature of the solution, the cleaning potency of the solution is doubled. The improved cleaning power of the heated solution efficiently removes dead insects, dust, salt, oil, and other road residuals that may accumulate on the windshield and head lamps on an automobile. Heated windshield washer solution in the winter provides the convenience of releasing frozen wiper blades, unblocking wiper nozzles, and aids in the removing of ice and snow build-up on the windshield.
In higher end automobiles, there exist various systems to heat the windshield washer solution for improved cleaning properties and for improved deicing capabilities in freezing temperatures. U.S. Pat. No. 3,888,412, issued to Herbert Lindo, discloses a windshield washer system in which a heat exchanger is disposed within the windshield washer fluid container. The heat exchanger is supplied with non-contact heated coolant through a hose from the radiator of the vehicle. The heated coolant provides heat to the windshield washer fluid via the heat exchanger prior to returning to the radiator. Another known variation of the above mentioned system, is an electrical heater element disposed within the windshield washer container in lieu of the non-contact coolant heat exchanger.
In the non-contact liquid to liquid heat exchanger, there is the added complication and cost of extra plumbing and connectors. Another drawback to the above mentioned systems is the added complexity of a liquid heat exchanger or an electrical heating element disposed in the windshield washer container, which could lead to cross fluid contamination or fouling of the heater element. The increased complexity of the systems results in greater potential leak points, electrical failures, and higher cost.
What is needed is a simple system that can recapture and utilize waste heat from a heat source, such as an internal combustion engine, battery pack, or fuel cell to heat windshield washer fluid without added complex plumbing or electrical systems.
The invention provides a system for capturing waste heat from a heat source via an air cooled radiator, to heat a container of windshield washer fluid in a motor vehicle. The system's components include a radiator, means to induce air flow through the radiator, and a support structure for mounting a windshield washer fluid container downstream of the radiator. The waste heat released into the air flow from the radiator is used to heat the windshield washer fluid in the container. For increased heat transfer efficiency from the heated air to the windshield washer fluid, the container has a face with an integrated heat conductive element that is faced toward the oncoming heated air flow. The support structure can be part of a radiator shroud assembly adapted to mount onto the radiator.
The shroud assembly includes a radiator shroud that is adapted to mount onto the radiator to define a plenum for receiving heated air and a windshield washer fluid container. The windshield washer fluid container may be formed with the radiator shroud as a single integral unit. On the container surface is a heat conductive element that is in direct contact with both the heated air flow and windshield washer fluid.
Located downstream of the radiator is a fan assembly that creates a low pressure zone which induces air flow through the passageways of the radiator. As hot coolant flows through the radiator tubes, heat is transferred from the hot coolant to the induced air stream. As the air flow is guided through the plenum, the heated air flow impinges upon a heat conductive element of the container, thereby transferring heat to the windshield washer fluid held in the container.
An alternative container embodiment has a reservoir chamber with an inverse “L“shape for increased windshield washer fluid storage capacity and an outlet chamber abutted against the reservoir chamber. The alternative container also has a plurality of substantially parallel flow tubes hydraulically connecting the reservoir chamber to the outlet chamber. The flow tubes are spaced apart providing a passageway for air flow therebetween. Located in the space provided are heat conductive elements such as interlacing fins for increased heat transfer efficiency
Located on top of the reservoir chamber is an inlet for the windshield washer fluid. As the reservoir chamber is filled, the windshield washer fluid flows within the parallel tubes to the outlet chamber. Connected to the outlet chamber is a tube that is connected to a pump to transfer the fluid from outlet chamber to the windshield or head lamps on demand. As heated air flows through the space between the parallel tubes, the fins transfer heat from the air flow to the windshield washer fluid located in the flow tubes.
One advantage of the invention is that waste heat from the radiator is captured to heat windshield washer fluid; thereby providing increased cleaning potency of the fluid and reducing the operating temperature in the engine compartment.
Yet another advantage of the invention is that complex electrical components or additional plumbing are not needed to provide heated windshield washer fluid; thereby, saving cost and freeing up valuable space in the engine compartment of a motor vehicle.
Yet another advantage of the invention is that the windshield washer container may be integrally formed with the fan shroud; thereby, saving cost and time in manufacturing.
Further features and advantages of the invention will appear more clearly from the following detail description of the preferred embodiment of the invention, which is given by way of non-limiting example only and with reference to the accompanying drawings.
This invention will be further described with reference to the accompanying drawings in which:
The invention relates to a system of components for capturing waste heat from an air cooled heat exchanger to heat windshield washer fluid for a motor vehicle. The air cooled heat exchanger is of a fin and tube core radiator that is part of a closed loop system used to remove excess heat from the internal combustion engine or other heat source, such as a battery pack or fuel cell, of an automobile.
Shown in
Shown in
Radiator shroud 110 is substantially rectangular having four side walls 120a, 120b, 120c, 120d integrally formed with back wall 130 to define interior surface 135. Interior surface 135 is oriented toward second face 14 of radiator 10. Radiator shroud 110 includes exterior surface 137 opposing radiator 10 and a center longitudinal axis 140 that is perpendicular to back wall 130. Attached to back wall 130 is windshield washer container 150 that contains the windshield washer fluid 151. Also shown in
The rectangular shape of radiator shroud 110 is shown for illustrative purposes only; therefore, is not meant to be limiting. Radiator shroud 110 can be of any shape, manufactured by any of the known methods in the art, as well as by any known material as long it provides the rigidity and strength necessary to support the novel features of the instant invention, which is described in detail herein. As such, the shroud can be manufactured by compression or blow molded plastic, fabricated or stamped metal, or any combination of the above.
Shown in
Heat conductive element 170 may be that of a heat conductive plate 180. Container open face 155 is adapted to engage with heat conductive plate 180 to form a liquid tight seal. The liquid tight seal may be formed by over-molding container 150 around the edges of conductive plate 180, as shown in
Heat conductive plate 180 is formed of a material having a higher heat transfer coefficient than that of container 150. Preferably, heat conductive plate 180 is formed of a metal such as copper. To increase the surface area of heat conductive plate 180, plate fins 185 or other protruding features may be incorporated on either surface. Windshield washer fluid 151 within container 150 is in direct contact with heat conductive plate 180 for optimal transfer of heat from the heated air flow to the fluid.
Windshield washer container 150 can be integrally molded into radiator shroud by utilizing the same material as radiator shroud 110. Heat conductive element 170, such as a heat conductive plate 180, can be later incorporated to the common surface of radiator shroud 110 and container 150 to form a liquid tight windshield washer container.
Located downstream of radiator 10 is fan assembly 220 which creates a low pressure zone which induces air flow through passageways 16 of radiator 10. Radiator shroud 110 may be adapted to accommodate fan assembly 220 or fan assembly 220 may be mounted on a separate support structure (not shown). As an alternative, fan assembly 220 may be mounted in a separate structure which is located upstream of radiator 10 toward the front of the automobile.
The operation of the radiator shroud assembly 100 to heat windshield washer fluid in windshield washer container 150 will be described in reference to
As an alternative arrangement, shown in
Shown in
Reservoir chamber 510 has an inverse “L” shape for increased fluid storage capacity. Located on top of the reservoir chamber 510 is inlet 540 for the windshield washer fluid. As the reservoir chamber 510 is filled, the windshield washer fluid flows across parallel tubes 530 to outlet chamber 520. Connected to outlet chamber 520 is a tube that is connected to a pump (not shown) that transfers the windshield washer fluid from outlet chamber 520 on demand. As heated air flows through the spacing between the parallel tubes 530, fins 550 transfer heat from the air flow to the windshield washer fluid located in the flow tubes 530.
Shown in
In reference to
While this invention is described in terms of heating windshield washer fluid, it should be noted that this system can also be used to heat various other fluids that are present in a motor vehicle such as transmission oil; therefore, it is not intended to be limited windshield washer fluids.
Furthermore, while a fan assembly is described to induce air flow through passageways of the radiator, other means can be utilized to create the desired air flow. Other means can include the forward motion of the motor vehicle moving through ambient air.
Still furthermore, while this invention has been described in terms of the preferred embodiments thereof, it is not intended to be so limited, but rather only to the extent set forth in the claims that follow.