The present invention relates to racks for storing bottles, and particularly to a wine bottle rotation system for turning wine bottles continuously or at pre-set timed intervals to promote the binding of free sediment to the inner glass wall in the wine bottles during the aging process.
During aging, wine often forms particulate matter, which is known as “free sediment.” Stationary storage of wine bottles can result in the settling of the sediment within the wine bottle, which can alter the taste and quality of the wine if decanted with the wine. In order to prevent the accumulation of free sediment within the wine, it is necessary to agitate the sediment within the bottle, but not to such a degree that would alter the quality of the wine or provide undue stress to the fragile glass bottle. Since free sediment is undesirable, it is necessary to have a system that promotes the binding of free sediment to the inner glass walls of the bottle, which would reduce the amount of free sediment in the wine.
Due to both the fragility of the glass of the wine bottles and the delicate nature of the wine, it is necessary to provide gentle rotation of the wine bottles, while simultaneously providing support and providing for display of a collection of the wine bottles.
Thus, a wine bottle rotation system solving the aforementioned problems is desired.
The disclosure is directed to a wine bottle rotation system. The system includes a support frame with a pair of vertical support members and at least one pair of horizontal support members. The horizontal support members are disposed between the pair of vertical support members. A plurality of rollers are rotatably mounted to the horizontal support members. The rollers are spaced apart so that they are adapted to receive a wine bottle. A drive means rotationally drives the rollers so that when the wine bottle is received between an adjacent pair of the rollers, the rollers cause the wine bottle to rotate, thus preventing settling and accumulation of free sediment within the wine bottle.
These and other features of the present invention will become readily apparent upon further review of the following specification and drawings..
Similar reference characters denote corresponding features consistently throughout the attached drawings.
The wine bottle rotation system includes a support frame formed from a pair of vertical support members having a plurality of horizontal support members, or shelves, mounted therebetween. The support frame forms a wine rack for receiving a plurality of wine bottles arrayed on the various shelves of the wine rack. A plurality of rollers are rotationally mounted between pairs of horizontal or vertical support members, and are spaced apart so that a wine bottle can be received between two adjacent rollers. Driven rotation of the rollers causes the wine bottle to rotate, thus promoting the binding of sediment to the inner walls of the wine bottle, reducing the amount of free sediment contained within the wine. The rollers may be driven to rotate either under the power of an electric motor or, alternatively, through manual turning of a hand-crank. The user may control both the timing and the rate of rotation of the bottles housed within the system,
Referring now to
Side vertical support elements 12 and horizontal support elements 14 are preferably made from wood, which is a traditional material used in the construction of wine racks; however, any suitable sturdy material capable of supporting a collection of wine bottles may be used.
As will be described in further detail below, individual drive rollers 110 are linked, each to the other, such that driven rotation of the top-most drive roller (by the drive means housed within control box 22, to be described in detail below) will drive each subsequent drive roller 110 in the vertical set of drive rollers 110. Further, it should be noted that the wine rack illustrated in
As shown in
Wine bottles 20 are preferably rotated one-quarter turn per rotational interval in order to prevent the build-up of sediment. Alternatively, motor control unit 22 may be programmed by the user to create any desired rotation of bottles 20, over any desired interval. For example, a one-quarter rotation could be generated once an hour, or a slow continuous rotation could be programmed, depending on the needs and desires of the user. In
An electric motor, housed in motor control unit 22, drives the drive rollers 110 to rotate and drive wine bottles 20 and gravity rollers 18. The rotation of rollers 18, 110 drives rotation of wine bottles 20, thus preventing the settling and accumulation of free sediment within the wine bottles 20, and producing a uniform and homogenous bound sedimentary layer, such as that shown in
Motor control unit 22 delivers direct rotational drive power to the top-most drive roller 110. As will be described below, drive rollers 110 are linked by drive belts 24, 26, which provide driven rotation for adjacent drive rollers 110 in the vertical stack of drive rollers 110.
Gravity rollers 18 are shown as having an interconnection of drive belts 120, 122, similar to drive belts 24, 26 of the vertical stack of drive rollers 110. As will be described below, with reference to
Rotary end caps 28 are similarly formed from a resilient, low-friction material, such as nylon or polished metal, in the preferred embodiment, though other suitable materials may be used. Rotary end caps 28 and bushings 30 are sized and shaped so that each rotary end cap 28 engages a corresponding bushing 30 so that rotary end cap 28 can freely rotate, under driven rotation, which will be described in further detail below, within the respective bushing 30. Though each rotary end cap 28 freely rotates within a corresponding bushing 30, the engagement of rotary end cap 28 and bushing 30 limits non-rotational movement of the gravity roller 18, thus maintaining alignment of gravity roller 18 within the support frame structure. Rotary end caps 28 may alternately contain bearings in order to reduce friction, depending on the needs and desires of the user. Further, in this alternative embodiment where the rotary end caps 28 include bearings, the roller axle may be permanently fixed or mounted to the corresponding horizontal support, as opposed to the inclusion of a retractable pin, for example. It should be understood that any suitable rotational connection may be utilized, dependent upon the needs and desires of the user.
Alternatively, end caps 28 and the corresponding bushings 30 may be beveled, providing for easy entry and engagement of end caps 28 with bushings 30. Further, rotary end caps 28 may be spring-loaded or otherwise elastically biased against the interior surfaces of bushings 30, thus allowing-for easy installation, removal and replacement of rollers 18, 110. Each roller 18, 110, however, should fit securely between the corresponding pair of bushings 30. Preferably, only approximately one-eighth of an inch of free space is left between one end of a roller 18, 110 and the corresponding bushing mounted in horizontal support 14.
In addition, the length of rollers 18, 110 and the lateral width of side vertical supports members 12 may be selected in order to provide support and rotation for multiple rows of bottles 20 mounted within a single level or shelf. For example, the wine rack could be two or three wine bottles deep, with rollers 18, 110 providing rotation to all bottles 20 housed on all levels or shelves of system 10.
As further shown in
Though shown as belts 24, 26, it should be understood that the means for transferring rotational energy to each level may take the form of a chain, a system of linked gears or any other suitable means for transferring rotational power. It should be noted that any drive transfer may be utilized and that belts 24, 26 are for exemplary purposes only.
As shown in
Preferably, each roller 18, 110 has a diameter of approximately two inches and a length of approximately twelve inches. The 12-inch long roller is designed for rotation of a single row of bottles; however, as described above with reference to
Alternatively, an alternating series of drive belts 1.20, 122 may be added, as shown in the embodiment of
Further, in an alternative embodiment, shown in
The wine bottle rotation system 10 provides a system for rotating a collection of wine bottles 20. Formed as a standard wine rack, the system 10 houses a plurality of bottles 20 on various shelves or levels, each provided with a plurality of driven rollers 18, 110. Rollers 18, 110 rotate the wine bottles 20 to prevent the settling and accumulation of free sediment within bottles 20, which can alter the taste and quality of the wine. The user is given control over the timing and rate of rotation of the bottles placed within the rotation system 10.
Though shown as a unitary system, it should be understood that a conventional wine rack could be adapted into wine bottle rotation system 10 through the addition of a separate drive means and rollers 18, 110. Thus, system 10 could be manufactured and sold as an entire unit, or the drive means and rollers could be manufactured as a separate system adapted to retrofit a standard pre-existing conventional wine rack or wine cabinet.
Wine bottle rotation system 10 could, alternatively, be adapted for mounting on a climate controlled wine storage rack or unit having sliding shelves, allowing the user to pull out individual shelves from the housing of the rack. Drive rollers 110 and gravity rollers 18 could be mounted on each individual sliding shelf, and be driven by a linked drive system similar to that described above.
It will be understood that wine bottles 20 are shown spaced apart in
It is to be understood that the present invention is not limited to the embodiments described above, but encompasses any and all embodiments within the scope of the following claims.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/US06/32821 | 8/22/2006 | WO | 00 | 7/19/2007 |
Number | Date | Country | |
---|---|---|---|
60713348 | Sep 2005 | US |