The present invention generally relates to ground engaging implements and, more particularly, to a digging tooth adapted to be secured to and project forward from a leading or forward edge of a bucket or the like.
Buckets of varying sizes and shapes are commonly arranged in operable combination with backhoes, front loaders, excavators and related earthworking equipment. Most buckets include areas, i.e., the leading bucket edge, bucket side walls, etc., which are exposed and, thus, are highly susceptible to wear, especially when the bucket is used in abrasive and rocky environments. In many bucket designs, a one-piece, transversely elongated base edge or lip is welded to other bucket walls and serves as a leading edge for the bucket. The bucket edge is frequently provided with a sharpened or beveled design to enhance ground penetration capability for the bucket. As will be appreciated, in highly compacted soil conditions and/or rocky terrain, a significant force is required to allow the bucket edge to penetrate such ground conditions.
To further enhance ground penetration with the leading edge of the bucket, a series of laterally spaced digging teeth are known to be arranged across and extend forward from the bucket edge. Each digging tooth has a transverse edge at a forward or front end thereof for fracturing the ground in advance of and, thus, promoting penetration by the remainder of the digging tooth and, ultimately, by the bucket edge. As will be appreciated, having the digging tooth fracture the ground in advance of the bucket edge furthermore facilitates gathering of ground material into the bucket.
Some digging teeth are of one-piece or unitary construction and design. A rear portion of a one-piece digging tooth is typically configured for attachment, as by welding, to the bucket edge or lip, while the remaining portion of the digging tooth is configured to extend forward from the bucket edge to fracture the ground in advance of the bucket edge penetrating the ground.
A vast preponderance of ground engaging teeth, however, are designed as two-part systems. A conventional two-part digging tooth system or assembly includes a digging/ground engaging tooth and an adapter arranged in operable combination with each other. The adapter includes a base or mounting portion and a nose portion projecting forward from the bucket edge and to which the digging tooth is releasably attached. In many applications, the base of the adapter is secured, as by welding to the leading edge of the bucket. In some designs, another wear component, in the form of a cap, is provided rearwardly of the digging tooth for adding wear protection to the adapter.
Regardless of the particular design of the digging tooth, be it of one -piece design or configured as a two-part system or assembly, wear and deterioration of the leading bucket edge is a very serious concern. The leading or cutting edge of the bucket is typically quite hard to protect against impacts, wear, and undue stress associated with typical excavating operations, while protection of the leading or cutting bucket edge remains of paramount importance. While lengthwise portions of the bucket edge are protected by the mounting portion of either design of the digging tooth, those portions of the bucket edge spanning the distance between adjacent laterally spaced digging teeth remain exposed to the same harsh and wearing environment as the digging teeth. Unfortunately, the front cutting edge of the digging tooth provides only a limited ground fracturing zone in advance of the bucket cutting edge. As such, known digging tooth designs have limited affects on the compacted ground material passing between adjacent digging teeth. Due to the onerous economic penalties associated with replacing the bucket cutting edge and related hardware replacement, some companies add a costly carbide hardfacing process to extend the life of those portions of the bucket edge between laterally adjacent digging teeth. Such carbide hardfacing applications, however, often exceed the cost of a new bucket edge.
The components of two-part digging tooth systems are typically maintained in operable combination relative to each other by various types of retaining devices. The majority of known retaining devices are either of a flex-pin type or a pin and retainer type. Hundreds of thousands of older backhoes use a well known flex-pin retainer for maintaining a tooth and adapter in operable combination with each other. Pin and retainer systems are also used on tens of thousands of older ground engaging implements and machines for maintaining a digging tooth and adapter in operable combination relative to each other. As ergonomics play more of a part in digging tooth designs, vertically and even diagonally disposed retainer devices and designs have also become increasingly more popular due to their convenient access.
Compatibility between component parts of the two-part digging tooth system is also an important concern. Because of the immense quantity of existing implements, the presence and location of certain design features on known two-part digging tooth systems requires consideration when contemplating changes to either component of the digging system. That is, when design changes are considered for either component of a two-part digging tooth assembly, the ancillary affects such changes can have on existing bucket designs should also be carefully considered. To reduce costs to the end user, most changes to either component of the two-part digging tooth system should be compatible with equipment already in the field. In this regard, lost production and costly welding and replacement repairs continue to plague the industry. For example, when a digging tooth is changed without considering the affects such change can have on the adapter, even a simple change to a digging tooth may further require cutting of the existing adapter from the bucket base edge followed by welding of a new adapter to the bucket base edge to accommodate such change to the tooth. In the interim, the bucket and machine remain out of service for the duration of the retrofitting process. Wear of a bucket cutting edge also requires extensive and time consuming repairs. Besides considerable time being spent on cutting the blade edge from the remainder of the bucket, replacing a worn blade edge often requires the additional step of replacing all the adapters thereon. Of course, replacing the adapters requires further efforts to attach all new adapters to the new blade edge. Replacing both the blade edge, and especially a beveled blade edge, and the adapters are both costly and time consuming.
Thus, there is a need and continuing desire for a digging tooth which is designed to offer enhanced wear protection to wear components disposed rearwardly thereof while maintaining compatibility with existing digging tooth systems.
In view of the above, and in accordance with one aspect there is provided a digging tooth adapted to extend forward from a digging implement having a transversely extending edge. The digging tooth defines a longitudinal centerline and has a forward end portion, with a cutting edge extending thereacross, and a rear end portion configured for attachment to the edge of the implement. The digging tooth further includes upper and lower angularly diverging surfaces having opposed side surfaces therebetween. The digging tooth further includes a wing projecting laterally outwardly from each side surface on the tooth. Each wing is preferably formed integral with the remainder of the tooth and has upper and lower planar surfaces each extending in a direction generally paralleling the cutting edge across the forward end portion of the tooth. The upper surface of each wing is disposed between the upper and lower surfaces of the tooth and in other than planar relationship relative to the upper surface of the digging tooth. In one form, the lower surface of each wine is disposed in between the upper and lower surfaces of the tooth and in other than planar relationship with the lower surface of the digging tooth. Moreover, each wing has a laterally widened rear portion, a laterally narrowed forward portion, and an outer edge extending therebetween for providing the tooth with a progressively widening ground fracturing zone whereby adding significant wear protection for the edge of the implement.
In a preferred embodiment, the rear end portion of the digging tooth is provided with a blind cavity for receiving and accommodating a lengthwise section of a nose portion of an adapter extending from the bucket edge or lip. In a most preferred form, the blind cavity at the rear end portion of the tooth has a generally rhombus-like configuration for a major lengthwise portion thereof. In one form, the laterally widened portion of each wing extends outward and forward from the rearward portion of the tooth.
In that form of the digging tooth having a blind cavity defined at the rear end portion thereof, the digging tooth further defines a bore opening to the blind cavity for accommodating at least a portion of a retaining apparatus used to releasably secure the tooth and adapter in operable combination relative to each other. Preferably, one of the upper and lower generally planar surfaces on each wing of the tooth further defines an open groove or channel arranged in general alignment relative to each other and relative to an axis of the bore defined by the tooth. The open channel on the planar surface of each wing serves to both accommodate and align a pin of the retaining apparatus with the bore defined by the tooth.
Many operators prefer to use a flex-pin retainer as the retaining apparatus of choice for holding the digging tooth and adapter in operable combination relative to each other. In this regard, and in a preferred embodiment, an area, arranged in proximate relation relative to the bore defined by the tooth, is configured to impart compression to a conventional flex-pin retaining apparatus as the flex-pin is inserted into a position to maintain the tooth and adapter in operable combination relative to each other.
In another embodiment, an area, arranged in proximate relation relative to the bore on the digging tooth, is configured to inhibit inadvertent axial shifting of the retaining apparatus relative to the adapter or tooth. In still another form, each wing extends laterally outward from an area on opposed side surfaces of the tooth proximately midway between the upper and lower surfaces of the digging tooth. In this embodiment, and when combined with providing an open top channel in the pin receiving area on each tooth, the upper generally planar surface of each wing on the tooth is configured to protect ends of the retaining apparatus extending beyond opposed sides of the digging tooth. To enhance the ability of the digging tooth to slice through and fracture the ground, an elongated outer edge portion on each wing is configured with a cutting edge.
According to another aspect, there is provided an elongated digging tooth adapted to extend forward from a digging implement having a transversely extending edge. The digging tooth defines a central axis and has a forward end portion, with a transverse cutting edge, and a rear end portion configured for attachment to the transversely extending edge of the implement. The digging tooth further includes upper and lower angularly diverging surfaces having opposed side surfaces therebetween. The digging tooth further includes wing structure projecting generally horizontally and laterally outward from an area on one side of the tooth. The wing structure is preferably formed integral with the remainder of the digging tooth and has generally horizontal upper and lower surfaces. In one form, the upper and lower surfaces of the wing structure are disposed between and in other than planar relationship relative to the upper and lower surfaces of the digging tooth. The wing structure has a laterally widened rear portion, a laterally narrowed front portion, and an outer edge extending therebetween and, for a major portion of the length thereof, converges toward the central axis of the tooth so as to provide the digging tooth with a widening ground penetration zone for facilitating penetration of the bucket edge.
In one form, a major lengthwise portion of the outer edge of the wing structure is configured to enhance the ability of the wing to slice through and fracture the ground. Preferably, the wing structure is disposed on the tooth in generally symmetrical relation relative to the central axis of the tooth whereby permitting the digging tooth to be reversed about the central axis.
In another form, the digging tooth is provided with a second wing structure is projecting generally horizontally and laterally outward from an area on an opposite side of the tooth. The second wing structure has generally horizontal upper and lower surfaces, with the upper and lower surfaces of the second wing structure being disposed between and in other than planar relationship relative to the upper and lower surfaces of the digging tooth. The second wing structure preferably has a rear laterally widened portion, a laterally narrowed front portion, and an outer edge extending therebetween and converging toward the central axis of said tooth whereby providing the digging tooth with a widening ground penetration zone for facilitating penetration of the transversely extending edge on the digging implement. In a most preferred form, the wing structure extending from those areas on opposed sides of the tooth are arranged proximately midway between the upper and lower surfaces of said tooth.
In a preferred embodiment, the rear end portion of the digging tooth is provided with a blind cavity for receiving and accommodating a lengthwise section of a nose portion of an adapter extending from the bucket edge or lip. In a most preferred form, a marginal edge extending about the blind cavity provided at the rear end portion of the tooth has a generally rhombus-like configuration for a major lengthwise portion thereof. In that embodiment wherein the blind cavity has a generally rhombus-like configuration, the digging tooth further defies a pair of axially aligned bores which each open to the blind cavity and are disposed along an axis extending at an angle ranging between about 25° and about 65° relative to the transverse cutting edge at the forward end portion of the tooth. In another form, the laterally widened portion of each wing extends outward and forward from the rear end portion of the tooth. In still another form, the digging tooth further includes opposed surfaces arranged within the blind cavity defined by the tooth for adding stability to the tooth during a digging operation.
According to another aspect, there is provided, in combination, a bucket having a forward edge and a plurality of two-part digging tooth assemblies connected to the edge in side-by-side relation. Each digging tooth assembly includes an adapter having a nose portion extending forward from the bucket edge and to which a replaceable digging tooth is secured. Each digging tooth has a forward end, with an edge transversely extending thereacross, a rear end, positioned adjacent to the bucket edge and defining a blind cavity for receiving the nose portion of the adapter, an upper surface extending forward and downwardly from the rearward end and toward the forward end of said digging tooth, and a lower surface extending forward and upwardly from the rearward end and toward the forward end of the digging tooth. Each digging tooth further has wing structure including a pair of wings extending outwardly in a direction generally parallel to the forward edge on the tooth from an area on each side of the tooth proximate midway between the upper and lower surfaces thereof. Each wing on the tooth has a laterally widened rear portion and a laterally narrowed front portion such that, for a major length thereof, an outer edge of each wing converges toward the central axis of the tooth and diverges relative to the outer edge of a wing on an adjacent tooth. The wings on each tooth are designed to protect the portion of the bucket edge disposed between adjacent tooth assemblies against wear.
In a preferred form, the rear end portion of the digging tooth is configured with a blind cavity for receiving and accommodating a lengthwise section of a nose portion of an adapter extending from the transversely extending edge of the digging implement. The blind cavity can have either a rhombus-like or a generally rectangular cross-sectional configuration.
In one embodiment, each tooth also includes a bore opening to the blind cavity at the rear end of the tooth for accommodating at least a portion of an apparatus used to releasably secure the tooth and adapter in operable combination. In a preferred form, the wing on each digging tooth has upper and lower generally planar surfaces, and with the outer edge of the wing on each digging tooth having angularly converging surfaces to provide each wing with a cutting edge for facilitating ground penetration.
In most preferred form, one of the generally planar surfaces on each wing of the digging tooth further defines an open channel or groove arranged in general alignment with an axis of the bore defined by the tooth for both accommodating and aligning a flex-pin of the retaining apparatus with said the bore defined by the tooth. Moreover, an area of the digging tooth, arranged in proximate relation relative to the bore, is preferably configured to compress a flex-pin retaining apparatus as the flex-pin is inserted into a position to maintain said tooth and adapter in operable combination relative to each other. Additionally, an area of the digging tooth arranged in proximate relation relative to the bore is preferably configured to inhibit inadvertent axial shifting of the retaining apparatus relative to said adapter or tooth. In one form, the generally planar surface of each wing defining the channel is disposed and configured to protect a lengthwise portion of said retaining apparatus extending beyond either side of said digging tooth.
In one design, the tooth of each of digging tooth assembly is configured such that the blind cavity has a generally rhombus-like cross-sectional configuration. In this tooth design, the tooth of each digging tooth assembly defines a pair of axially aligned bores opening to the tooth cavity and disposed along an axis extending at an angle ranging between about 25° and about 65° relative to the transversely extending edge at the forward end of the tooth.
According to another aspect, there is provided a ground engaging tooth adapted to be mounted to a digging implement and having a wear component arranged rearwardly thereof. The ground engaging tooth defines a central axis and has a forward end portion, with an edge extending transversely thereacross, and a rear end portion. The digging tooth further includes upper and lower angularly diverging surfaces having opposed side surfaces therebetween. The digging tooth further includes a free ended projection extending laterally outwardly from each side surface on the tooth. Each wing is preferably formed integral with the remainder of the tooth and has upper and lower planar surfaces each extending in a direction generally paralleling the cutting edge across the forward end portion of the tooth. In one form, the upper and lower surfaces of each wing are disposed between and in other than planar relationship relative to the upper and lower surfaces of the digging tooth. Moreover, each wing has a laterally widened rear portion, a laterally narrowed forward portion, and an outer edge extending therebetween for providing the tooth with a progressively widening ground fracturing zone whereby adding significant wear protection for the edge of the implement.
In a preferred embodiment, the rear end portion of the digging tooth is provided with a blind cavity for receiving and accommodating a lengthwise section of a nose portion of an adapter extending from the bucket edge or lip. In a most preferred form, the blind cavity at the rear end portion of the tooth has a generally rhombus-like configuration for a major lengthwise portion thereof. The tooth is further provided with a free ended projection integrally formed with the remainder of the tooth and extending away from and longitudinally along at least one of the multiple surfaces of the tooth between the rear end portion and forward end portion thereof. A rear portion of the projection extends away from the surface on the tooth from which it projects a greater distance than does a forward portion such that an outer edge of the projection converges from the rear toward the front and toward the central axis of the tooth such that, following initial ground penetration, the outer edge of the projection is disposed to initially fracture the ground through which the tooth passes whereby reducing wear on the wear component arranged rearwardly of the two-piece tooth assembly.
In one form, the projection on the tooth extends away from the upper surface of the tooth in a direction extending generally normal to the edge extending transversely across the forward end of the tooth. In another form, the projection is laterally offset relative to the upper surface of the tooth such that the projection is disposed closer to one side surface of the tooth than the other. In still another form, the projection extends upwardly from and longitudinally along an area generally centralized between the side surfaces on the tooth. Regardless of where the projection is located on the digging tooth, a cutting edge extends along a major portion of the outer extreme of the projection to facilitate ground penetration by the projection.
In yet another embodiment, the rear end portion of the digging tooth defines a blind cavity opening to a rear of the tooth for receiving and accommodating a lengthwise section of a nose portion of an adapter extending from a transversely extending edge of the digging implement. The blind cavity opens to the rear of the digging tooth and, preferably, has a generally rhombus-like cross-sectional configuration for a major lengthwise portion thereof. In another form, the blind cavity has a cross-sectional profile with a rectangular configuration for a major lengthwise portion thereof.
In another embodiment, the projection has upper and lower generally parallel surfaces extending laterally outward from one side surface on the tooth. The upper and lower surfaces of the projection are preferably disposed between and in other than planar relationship relative to the upper and lower surfaces of the digging tooth. In another form, the projection extends laterally from one side surface on the tooth proximately midway between the upper and lower surfaces and in a direction generally parallel to the edge extending transversely across the forward end of the tooth. To promote the versatility of the ground engaging tooth, the projection laterally extending from one side surface of the tooth is preferably disposed symmetrically relative to the central axis whereby permitting the tooth to be reversed about the central axis.
In another embodiment, the ground engaging tooth includes a second free ended projection designed as a mirror image of the other free ended projection. That is, the second free ended projection extends from the other side surface on the tooth. More specifically, such second projection on the tooth extends laterally outwardly from the other side and, in one form, proximately midway between the upper and lower surfaces and in a direction generally parallel to the edge extending transversely across the forward end of the tooth. In both embodiments, the projection is preferably formed as an integral part of the digging tooth.
Preferably, a rear portion of each projection, extending from a respective side surface of the tooth, has generally planar surfaces extending generally parallel to the edge at the forward end of the tooth. In a preferred embodiment, the ground engaging tooth further defines a bore having an axis extending generally normal to the central axis. Such bore in the tooth opens to the blind cavity defined by the tooth for accommodating at least a portion of a retaining apparatus used to releasably secure the tooth and adapter in operable combination relative to each other.
In one embodiment, one of the generally planar surface on each projection defines an open channel arranged in general alignment with the axis of the bore in the tooth for accommodating and aligning the retaining apparatus therewith. As mentioned above, many operators prefer to use a flex-pin type retainer for operably securing the tooth and adapter in operable combination relative to each other. In this regard, and in another form, an area of the tooth arranged proximate to the bore in the tooth is configured to compress the flex-pin type retaining apparatus as the flex-pin of the retaining apparatus is inserted into a position to maintain said tooth and adapter in operable combination relative to each other.
In a preferred embodiment, an area of the digging tooth arranged in proximate relation relative to the bore in the tooth is configured to inhibit inadvertent axial shifting of the retaining apparatus relative to said adapter or tooth. In that form wherein the projection extends from the side surface of the digging tooth, the open channel provided in one of the generally planar surfaces of the respective wing along with the disposition of the generally planar surface defining such channel on the wing is configured to protect a lengthwise portion of the retaining apparatus extending beyond opposed sides of the tooth.
According to still another aspect, there is provided a ground engaging tooth adapted to be mounted to a digging implement and having a wear component arranged rearwardly thereof after being mounted on the digging implement. The digging tooth defines a central axis and has a forward end portion, with a transverse cutting edge, and a rear end portion configured for attachment to the transversely extending edge of the implement. The digging tooth further includes upper and lower angularly diverging surfaces with opposed side surfaces disposed therebetween. The digging tooth is further provided with a first projection extending away from and longitudinally along at least a lengthwise portion of one surface on the tooth. The lengthwise portion of the projection has a length less than a length between the forward and rearward ends of the tooth. The digging tooth is further provided with a second projection extending from the same surface on the tooth rearward of the first projection. During operation, the first and second projections on the tooth combine with each other to advantageously fracture the ground through which said tooth passes whereby reducing wear on the wear component arranged rearwardly of the two-piece tooth assembly.
Preferably, the digging tooth is provided, at the rear end portion thereof, with a blind cavity opening to the rear of the of the tooth for receiving and accommodating a lengthwise section of a nose portion of an adapter extending forward from a leading edge of the digging implement. The cavity opens to the rear of the tooth and defines a generally rhombus-like cross-sectional configuration for a major lengthwise portion thereof. In a most preferred embodiment, the digging tooth further includes third and fourth projections extending from another surface on the tooth disposed in opposed relation relative to the other digging tooth surface from which the first and second projections extend. The third and fourth projections are preferably configured as mirror images of the first and second projections, respectively.
According to another aspect, there is provided an elongated digging tooth for a two-piece digging tooth assembly adapted to be secured to a transversely extending edge of a bucket or the like. The digging tooth defines a central axis and has a front end, with a cutting edge transversely extending thereacross, and a rear end with a blind cavity opening thereto for receiving and accommodating a nose portion of an adapter extending forward from the transversely extending edge of the bucket. The tooth and said adapter each define a bore which are arranged in registry with one another after said digging tooth and adapter are conjoined so as to allow a retaining apparatus to pass at least partially through the bores whereby maintaining the tooth and adapter in operable combination with each other. The bore defined by the tooth defines an axis extending generally normal to the central axis of the tooth, with the digging tooth further including an upper surface extending forward and downwardly from the rear end and toward the cutting edge of the digging tooth, and a lower surface extending forward and upwardly from the rear end and toward the cutting edge of the digging tooth. The digging tooth further includes a generally horizontal projection extending laterally outward from an area on one side of the tooth. The projection has generally parallel and horizontal upper and lower surfaces disposed between and in other than planar relationship relative to the upper and lower surfaces of the digging tooth, with the projection having a laterally widened rear portion, disposed forward of the axis defined by the bore in the tooth and an outer edge extending forward from the laterally widened rear portion of the projection and converging toward the central axis of said tooth whereby providing said digging tooth with a progressively widening ground penetration zone for facilitating penetration of the bucket edge.
In a preferred form, the projection is integrally formed as part of and with the remainder of the tooth. Moreover, the tooth is preferably configured such that a marginal edge extending about the cavity opening to the rear of the tooth has a generally rectangular-like cross-sectional configuration. In a preferred embodiment, the projection is arranged on the tooth in generally symmetrical relation relative to the central axis whereby permitting said tooth to be reversed about the central axis. In a most preferred form, the projection laterally extends outwardly from one side surface on the tooth proximately midway between the upper and lower surfaces and in a direction generally parallel to the cutting edge extending transversely across the front end of the tooth.
According to still another aspect, there is provided an elongated digging tooth for a two-piece digging tooth assembly adapted to be secured to a transversely extending edge of a bucket or the like. The digging tooth defines a central axis and has a front end, with a cutting edge transversely extending thereacross, a rear end having a blind cavity opening thereto for receiving and accommodating a nose portion of an adapter extending forward from the transversely extending edge of the bucket. The tooth and adapter each define a bore which are arranged in registry with one another after the digging tooth and adapter are conjoined so as to allow a retaining apparatus to pass at least partially through the bores whereby maintaining said tooth and adapter in operable combination with each other. The bore in the tooth defines an axis extending generally normal to the central axis of the tooth. The digging tooth further including an upper surface extending forward and downwardly from the rear end and toward the cutting edge of said digging tooth, and a lower surface extending forward and upwardly from the rearward end and toward the cutting edge of the digging tooth. The digging tooth further includes a generally horizontal projection extending laterally outward from an area on one side of the tooth, with the projection having upper and lower surfaces preferably disposed between and in other than planar relationship relative to the upper and lower surfaces of the digging tooth. The projection on the tooth is disposed rearward of the axis defined by the bore in the tooth and the rear end of said tooth whereby providing the digging tooth with a progressively widening ground penetration zone for facilitating penetration of the bucket edge.
Preferably, the projection is integrally formed as part of and with the remainder of the tooth. In one form, the projection on the tooth has at least one vertically angled forward facing surface for enhancing the ability of the projection to fracture the ground in advance of and thereby protect the transversely extending edge of the bucket against wear. In one form, the projection is arranged on the tooth in generally symmetrical relation relative to said central axis whereby permitting the tooth to be reversed about said central axis. In a most preferred form, the projection laterally extends outwardly from one side surface on the tooth proximately midway between said upper and lower surfaces and in a direction generally parallel to the cutting edge extending transversely across the front end of the tooth.
A primary object of the present invention is to provide a winged digging tooth which will provide the bucket of the above general type significant resistence to wear at an economical cost.
Another feature of the present invention relates to the provision of a digging tooth which shall enhance bucket ground penetration capabilities while concomitantly protecting a bucket edge against wear in even highly compacted and/or rocky soil environments.
Another feature of the present invention relates to providing a bucket with a new and preferably sharpened cutting edge each time the digging teeth are replaced.
Another object of the present invention is to provide a winged digging tooth configured to shield those components disposed rearwardly of the digging tooth against wear.
Another object of the invention is to provide a winged digging tooth extending forward from a bucket edge whereby taking the brunt of the initial digging force while providing a gradually widening ground penetration zone to facilitate ground penetration of the bucket edge.
Still another feature of the present invention relates to providing a ground engaging tooth which offers low cost replaceable protection to a bucket edge of any desired dimensions while also increasing bucket capacity.
Yet another feature of the present invention relates to the provision of numerous digging tooth assemblies laterally spaced in side-by-side relation across an edge of an earth moving bucket and wherein each digging tooth assembly includes an adapter with a replaceable digging tooth extending therefrom, and wherein the digging teeth, in combination with each other, protect and form a swept back, sharpened edge extending forward of and extending across the edge of the earth moving bucket.
Still another feature of the present invention relates to a digging tooth having wing structure which is configured to cradle, support and guide a retaining apparatus relative to an opening in the tooth through which the retaining apparatus lengthwise passes.
Still another feature of the present invention relates to a digging tooth which is configured to compress a flex-pin type retaining apparatus prior to insertion of the retaining apparatus into retaining apparatus receiving bore of an adapter forming part of a two-part digging tooth system.
Yet another feature of the present invention relates to a digging tooth which is configured to protect opposed ends of a retaining apparatus extending beyond the outer surfaces on the digging tooth.
Another feature of the present invention relates to a digging tooth which, following complete insertion of the retaining apparatus thereinto, is preferably designed and configured to inhibit inadvertent shifting of the retaining apparatus relative to the digging tooth or adapter.
These and other numerous objects aims and advantages of the present invention will become readily apparent from the following detailed description and drawings.
The present invention is susceptible of embodiment in multiple forms and there is shown in the drawings and will hereinafter be described various embodiments of the invention, with the understanding the present disclosure sets forth exemplifications of the invention which are not intended to limit the invention to the specific embodiments illustrated and described.
Referring now to the drawings, wherein like reference numerals indicate like parts throughout the several views, there is shown a ground engaging implement, such as a bucket or the like, generally indicated by numeral 10, with a series of digging tooth assemblies 12 arranged in side-by-side relation relative to each other. Bucket 10 is of the type commonly arranged in combination with a backhoe, front loader, excavator or related earth working implement. As shown, bucket 10 includes a base edge or lip 14 extending across and typically welded to the remainder of the bucket 10. As will be appreciated, the leading bucket edge or lip 14 is usually of one-piece construction and can have varying lengths depending upon the particular application.
Each digging tooth assembly 12 extends forward from the bucket edge 14 to fracture, penetrate, and trench the ground material in advance of and thereby promote penetration of the bucket edge 14 into the ground. Typically, and with the exception of the digging tooth assemblies disposed toward opposite corners of the bucket 10, the majority of tooth assemblies 12 are of similar construction relative to each other. Accordingly, only one digging tooth assembly 12 will be discussed in detail. As shown in
Adapter 20 is preferably of one-piece construction and has an elongated free ended configuration. More specifically, adapter 20 includes a base portion 26 and a nose portion 28. Base portion 26 is configured for suitable attachment to the bucket edge 14 with nose portion 28 extending forward therefrom. It is not uncommon in the industry to attach the adapter base portion 26 to the bucket edge 14 as by welding. As shown in
Each digging tooth 22 has an elongated generally wedge shaped configuration including a first or upper surface 30 and a second or lower surface 32 (
As shown in
The conjuncture between the adapter 20 and the digging tooth 22 can take a myriad of different forms without detracting from the spirit and scope of the invention and, in cross-section, has a closed margin 52 extending thereabout. As will be appreciated, the cross-section of the blind cavity 50 on tooth 22 generally corresponds to the cross-section of the nose-portion 28 of the adapter 20. As such, and when the adapter 20 and digging tooth 22 are assembled in operable combination relative to each other, a lengthwise portion of the adapter nose portion 28 longitudinally extends and is accommodated within the blind cavity 50 on the digging tooth 22.
In the embodiment illustrated in
The adapter 20 and digging tooth 22 are preferably designed to accommodate either a vertically disposed or diagonal pin retaining system. Digging tooth 22 includes a throughbore which, in the illustrated embodiment, includes a pair of openings or holes 54, 56 positioned to cooperate with the opening or bore 29 in the adapter nose portion 28 and axially aligned along a diagonal axis 58. In the embodiment illustrated in
The apparatus 24 for maintaining the adapter 20 and digging tooth 22 in operable combination can also take various forms without detracting or departing from the spirt and scope of the present invention. In the embodiment shown in
In the embodiment shown in
According to the present invention, and as shown in
In the illustrated embodiment shown, wing structure 80 including wings 82, 84 is preferably formed integral with the reminder of the digging tooth 22. In one form, each wing 82, 84 is designed such that a dynamic or longitudinally swept back configuration is provided to the tooth 22. In the embodiment illustrated in FIGS 1 and 4, each wing 82, 84 extending laterally outward from the side surfaces 42, 44, respectively, has a rear laterally widened portion 86, a laterally narrowed forward or front portion 88, and an outer edge 90 extending therebetween.
Preferably, each wing 82, 84 has a longitudinally swept back design for a major portion of the length of the tooth 22 between the front and rear ends 36 and 34, respectively, thereof. That is, in one form, each wing 82, 84 is designed to have a longitudinally swept back configuration for more than one half the overall length of the tooth such that ground engaging or digging tooth 22 of assembly 12 has a gradually widening ground penetration zone for initially fracturing the ground engaged by the tooth in advance of the bucket edge 14. Slanting or reducing the width or lateral outward extension of the wings 82, 84 toward their forward ends minimizes the force required for initial penetration of the digging tooth 22 while the elongated dynamic or swept back winged design furthermore facilitates ground penetration while furthermore permitting the digging tooth to continually and gradually widen the penetration zone for each digging tooth 22 whereby enhancing the ground penetration capability for the bucket 10. Although in a preferred embodiment the wings 82, 84 longitudinally extend for a major lengthwise portion along opposed side surfaces 42, 44, respectively, of the digging tooth 22, it should be appreciated the wings 82, 84 could have a length less than that shown while extending between the rear and forward ends 34, 36 of the tooth 22 without detracting or departing from the spirit and scope of the invention.
The outer edge 90 of each wing 82, 84 can also have different designs along the length thereof without detracting or departing from the spirit and scope of this invention. In the embodiment shown in
As shown in
In one embodiment, the remaining linear edge portion of each wing 82, 84 is preferably designed to promote ground penetration of the tooth 22. That is, the lateral extreme of each wing 82, 84 is preferably provided with first and second edges 96 and 98 (
Hundreds of thousands of two-piece digging tooth systems having a digging tooth with a generally rectangular pocket or blind cavity and a rectangularly shaped nose portion on the adapter along with a generally horizontally disposed retaining apparatus already exist and are being widely used daily in the industry. As such,
As shown in
Digging tooth 122 has an elongated generally wedge shaped configuration including a first or upper surface 130 and a second or lower surface 132 (
Returning to
According to the present invention, and as shown in
Each wing 182, 184 comprising wing structure 180 is preferably formed integral with the reminder of the digging tooth 122. Moreover, each wing 182, 184 is preferably designed and configured such that a dynamic or longitudinally swept back configuration is provided to the digging tooth 122. In the embodiment illustrated in
Preferably, each wing 182, 184 has a longitudinally swept back design for a major portion of the length of the tooth 122 between the front and rear ends 136 and 134, respectively, thereof. That is, in the form shown in
As discussed regarding digging tooth 22, the outer edge 190 of each wing 182, 184 can have different designs along the length thereof without detracting or departing from the spirit and scope of this invention. In the embodiment shown in
As shown in
In the embodiment shown, the remaining linear edge portion of each wing 182, 184 is preferably designed to promote ground penetration of the tooth 122. That is, the lateral extreme of each wing 182, 184 is preferably provided with first and second chamferred edges 196 and 198, respectively, angling or converging relative to each other to provide the remaining edge portion of each wing 182, 184 with a sharpened or knife-like configuration whereby promoting the ability of the wings 182, 184 to slice, penetrate and fracture the ground of the leading bucket edge 14.
Typically, the conventional adapter 120 illustrated in combination with digging tooth 122 further defines a generally horizontally disposed throughbore 129 (
In the embodiment illustrated in
Some operators prefer using a flex-pin retainer 60 (
As shown in
As illustrated in
As shown in
In a preferred embodiment, the area arranged proximate to each tooth opening 154, 156 (
Each channel 183, 185 provided on the wing structure 180 preferably opens to an upper surface of a respective wing 182, 184, respectively. To maintain structural strength along the entire length of each wing 182, 184 of wing structure 180, and as shown by example in
To accommodate a corner adapter position on a bucket, the wing structure on the digging tooth can be configured with a single wing design. In this regard,
As shown in
The ground engaging or digging tooth 222 further includes a pair of laterally spaced side surfaces 242 and 244. Digging tooth 222 further includes a cutting or ground penetrating edge 246 extending transversely across the forward end 236 thereof. To allow the tooth 222 to be mounted in operable combination with adapter 220, a blind cavity or socket 250 is defined by and opens to a rear end 234 of the tooth 222. As will be appreciated, the cavity 250, defined by and opening to the rear 234 of the digging tooth 222, has a cross-sectional configuration which compliments the cross-sectional configuration of the nose portion 228 of adapter 220 whereby allowing adapter 220 and digging tooth 222 to be assembled in operable combination. That is, the cavity 250 defined by tooth 222 can have a generally rhombus-like cross-sectional configuration, a generally rectangular cross-sectional configuration, or any other suitable cross-sectional configuration without detracting or departing from the spirit and scope of the invention.
According to the present invention, and as shown, wing structure 280 is provided on the digging or ground engaging tooth 222. In the illustrated embodiment, wing structure 280 includes a single wing 284 laterally extending outwardly from the side surface 244 of the tooth 222 proximately midway between the upper and lower surfaces 230 and 232, respectively. In the same sense described above, the wing structure 280 serves to shield and protect ground engaging components disposed rearwardly of the rear end 234 of the digging tooth 222 against wear. Moreover, and although only a single wing 284 is provided, such wing 284 serves to significantly widen the ground penetration zone provided by the digging tooth 222. Widening the penetration zone for the digging tooth also serves to enhance the penetration capability of the bucket edge into the ground while concomitantly reducing the energy required to effect such ends.
Wing 284 is preferably formed integral with the reminder of the digging tooth 222. In a preferred form, the wing 284 is arranged on the tooth 222 in generally symmetrical relation relative to the central axis 238 whereby enhancing the versatility of the tooth by allowing it to be reversed about the central axis 238 and, thus, serve on either corner adapter for the bucket. In the embodiment illustrated in
Preferably, wing 284 has a longitudinally swept back design for a major portion of the length of the tooth 222 between the rear and front ends 234 and 236, respectively, thereof. That is, in the form shown in
As discussed regarding tooth 22, the outer edge 290 of wing 284 can have different designs along the length thereof without detracting or departing from the spirit and scope of this invention. As shown in
As shown in
In the embodiment shown in
As shown, mining tooth 322 has an elongated generally wedge shaped configuration including an upper surface 330 and a lower surface 332. The upper surface 330 downwardly slants from the rear end 334 and toward the forward end 336 of the tooth 322. The lower surface 332 slants upward between the rear and forward ends 334 and 336, respectively. In a one form, the tooth 332 is provided with a cutting edge 346 extending transversely across the front end of the tooth 322. Preferably, the ends 334, 336 of the tooth are aligned along a central axis 338.
The ground engaging or digging tooth 322 further includes a pair of laterally spaced side surfaces 342 and 344. To allow the tooth 322 to be mounted in operable combination with an adapter or support (not shown), a blind cavity or pocket 350 is defined by and opens to a rear end 334 of the tooth 322. As will be appreciated, the cavity 350, defined by and opening to the rear 334 of the digging tooth 322, has a cross-sectional configuration which compliments the cross-sectional configuration of the nose portion of an adapter whereby allowing adapter 320 and digging tooth 322 to be assembled in operable combination. That is, the cavity 350 defined by tooth 322 can have a generally rhombus-like cross-sectional configuration, a generally rectangular cross-sectional configuration, or other suitable cross-sectional configuration without detracting or departing from the spirit and scope of the invention.
As shown, mining tooth 322 is provided with wing structure 380. In this embodiment, the wing structure 380 includes a longitudinally extending wing 384 projecting vertically from the upper surface 330 of the digging tooth 322 proximately midway between the side surfaces 342 and 344, respectively, and in a direction extending generally normal to the transverse cutting edge 346 at the front end 336 of the tooth. In the illustrated embodiment, and while having sufficient strength to serve the purpose of which it is designed, the projection or wing 384 has a relatively narrow lateral width to promote ground penetration as the tooth moves both vertically and horizontally. Providing the wing structure 380 on the tooth 322 is expected to extend the wear life of those wear components, i.e. wear cap, and etc., arranged in operable combination with a two-part digging tooth system of which tooth 322 is configured to serve as an integral part.
Wing 384 of structure 380 is preferably formed integral with the reminder of the digging tooth 322. In that form illustrated in
In the embodiment shown, the linear edge portion 390 of wing 384 is preferably designed to promote ground penetration of the tooth 322. That is, the vertical extreme of wing 384 is preferably provided with first and second chamferred edges 396 and 398, respectively, angling or converging relative to each other to provide the edge portion of the wing 384 with a sharpened or knife-like configuration whereby promoting the ability of the wing 384 to slice, penetrate and fracture the ground as the tooth 322 is moved both horizontally and vertically.
As shown in
As shown in
According to the present invention, and as shown, tooth 422 includes a longitudinally extending projection 484 extending vertically from the upper surface 430 of the digging tooth 422 in a direction extending generally normal to the edge 446 at the forward end 436 of the tooth 422. In the embodiment depicted in
Projection 484 is preferably formed integral with the reminder of the tooth 422. In a preferred form, illustrated in
In the embodiment shown, the linear edge portion of the projection 484 is preferably designed to promote ground penetration of the tooth 422. That is, the extreme vertical edge of the projection 484 is preferably provided with first and second chamferred edges 496 and 498, respectively, angling or converging relative to each other to provide the edge portion of the projection 484 with a sharpened or knife-like configuration whereby promoting the ability of the projection 484 to slice, penetrate and fracture the ground as the tooth 422 is moved both horizontally and vertically through the ground during an operation.
As shown in
The ground engaging or digging tooth 522 further includes a pair of laterally spaced side surfaces 542 and 544. Digging tooth 522 further includes a cutting or ground penetrating edge 546 extending transversely across the forward end 536 thereof. To allow the tooth 522 to be mounted in operable combination with adapter 520, a blind cavity or socket 550 is defined by and opens to a rear end 534 of the tooth 522. As will be appreciated, the cavity 550, defined by and opening to the rear 534 of the tooth 522, has a cross-sectional configuration which compliments the cross-sectional configuration of the nose portion of adapter 520 whereby allowing adapter 520 and digging tooth 522 to be assembled in operable combination. That is, the cavity 550 defined by tooth 522 can have a generally rhombus-like cross-sectional configuration, a generally rectangular cross-sectional configuration, or any other suitable cross-sectional configuration without detracting or departing from the spirit and scope of the invention.
According to the present invention, and as shown in
Each wing or projection 582, 584 is comprised of at least two longitudinally spaced sections. That is, wing 582 includes two laterally extending sections 582A and 582B disposed to the same side of the central axis relative to each other and preferably disposed in fore-and-aft and longitudinally spaced relation relative to each other. Similarly, wing 584 includes two laterally extending sections 584A and 584B preferably disposed in fore-and-aft and longitudinally spaced relation relative to each other. The fore-and-aft sections of each wing or lateral projection 582, 584 are preferably formed integral with the reminder of the digging tooth 522. In the embodiment illustrated in
Preferably, sections 582A and 582B of wing 582 extend laterally outward from the side surface 542 of tooth 522 proximately mid-distance between the upper and lower surfaces 530 and 532 of the digging tooth 522. In the illustrated embodiment, and while having sufficient strength to serve the purpose of which it is designed, each projection or wing section 582A and 582B comprising wing 582 has a relatively narrow vertical width, especially toward a forward end thereof, to promote ground penetration as the tooth is driven and moves horizontally through the ground.
In the illustrated embodiment, each rearwardly disposed wing section 582B of the wing structure 580 has a laterally widened portion 586B laterally extending from the side surface 542 of tooth a greater lateral width than does a laterally narrowed portion 586A of the forward disposed wing section 582A of the same wing structure. Each section 582A and 582B on wing 582 has a longitudinally extending outer edge portion 590A and 590B, respectively. Notably, however, the cumulative width and effect of the sections 582A and 582B is intended to be and is substantially equivalent to the lateral width of the comparable wing 182 on the above described digging tooth embodiment illustrated in
As discussed regarding digging tooth 22, the outer edge portions 590A and 590B associated with each wing section 582A and 582B of a respective wing 582 can have different designs along the length thereof without detracting or departing from the spirit and scope of this invention. For example, in the embodiment shown in
In the exemplary embodiment shown in
Turning to
In the embodiment shown in
In the embodiment illustrated in
As shown in
The ground engaging or digging tooth 622 further includes a pair of laterally spaced side surfaces 642 and 644. Digging tooth 622 further includes a cutting or ground penetrating edge 646 extending transversely across the forward end 636 thereof. To allow the tooth 622 to be mounted in operable combination with adapter 620, a blind cavity or socket 650 is defined by and opens to a rear end 634 of the tooth 622. As will be appreciated, the cavity 650, defined by and opening to the rear 634 of the tooth 622, has a cross-sectional configuration which compliments the cross-sectional configuration of the nose portion of adapter 620 whereby allowing adapter 620 and digging tooth 622 to be assembled in operable combination. That is, the cavity 650 defined by tooth 622 can have a generally rhombus-like cross-sectional configuration, a generally rectangular cross-sectional configuration, or any other suitable cross-sectional configuration without detracting or departing from the spirit and scope of the invention.
According to the present invention, and as shown in
The wing or projection 682 has upper and lower generally planar and horizontally disposed surfaces 692 and 694, respectively, extending from the side surface 642 of the digging tooth 622 and toward the outer edge 690. Similarly, the wing or projection 684 has upper and lower generally planar and horizontally disposed surfaces 692 and 694, respectively, extending from the side surface 644 of the digging tooth 622 and toward the outer edge 690. The outer edge 690 extends forward from the laterally widened portion 686 on each projection 682, 684 and converges toward the central axis 638 of the digging tooth whereby providing the digging tooth with a progressively widening ground penetration zone for facilitating ground penetration of the bucket edge. Moreover, a major longitudinal length of the outer edge 690 provided on each extension or projection 682, 684 is preferably chamferred to enhance digging tooth penetration as it is forcibly driven through the ground.
As shown, each projection 682, 684 has a rear edge 685. To promote the insertion of the retaining apparatus 624 into operable association with the adapter 620 and digging tooth 622, the rear edge 685 of each lateral projection 682, 684 is disposed forward of the axis 658 defined by the bore 654, 656 in the digging tooth 622.
As shown in
The ground engaging or digging tooth 722 further includes a pair of laterally spaced side surfaces 742 and 744. Digging tooth 722 further includes a cutting or ground penetrating edge 746 extending transversely across the forward end 736 thereof. To allow the tooth 722 to be mounted in operable combination with adapter 720, a blind cavity or socket 750 is defined by and opens to a rear end 734 of the tooth 722. As will be appreciated, the cavity 750, defined by and opening to the rear 734 of the tooth 722, has a cross-sectional configuration which compliments the cross-sectional configuration of the nose portion of adapter 720 whereby allowing adapter 720 and digging tooth 722 to be assembled in operable combination. That is, the cavity 750 defined by tooth 722 can have a generally rhombus-like cross-sectional configuration, a generally rectangular cross-sectional configuration, or any other suitable cross-sectional configuration without detracting or departing from the spirit and scope of the invention.
According to the present invention, and as shown in
As shown, each projection 782, 784 extends forward from the rear 734 of the digging tooth and has a front or forward edge 785. To promote the insertion of the retaining apparatus 724 into operable association with the adapter 720 and digging tooth 722, the forward edge 785 of each lateral projection 782, 784 is disposed rearward of the axis 758 defined by the bore 754, 756 in the digging tooth 722.
As will be appreciated, and without detracting or departing from the spirit and scope of the scope of the present invention, the principals of the present invention equally apply to digging teeth of a unitary or one-piece design.
As shown, digging tooth 822 includes an adapter portion 820A and a digging tooth portion 822A formed as a single piece. The adapter portion 820A of digging tooth 822 is configured to allow for attachment of the digging tooth 822 to the leading edge of the bucket or lip just as adapter 20 was attached to the bucket or lip.
The digging tooth portion 822A of digging tooth 822 has an elongated generally wedge shaped configuration including an upper surface 830 and a lower surface 832. The upper surface 830 slants from the rear end 834 of the digging tooth portion 822A and toward the forward end 836 of the tooth portion 822A. The lower surface 832 slants upward from the rear end 834 and toward the forward end 836 of the tooth 822. In the illustrated embodiment, the ends 834, 836 as well as adapter portion 820A are all aligned along a central axis 838. The digging tooth portion 822A of the ground engaging or digging tooth 822 further includes a pair of laterally spaced side surfaces 842 and 844. Digging tooth 822 further includes a cutting or ground penetrating edge 846 extending transversely across the forward end 836 thereof.
According to the present invention, and as shown in
After teeth embodying principals of the present invention are operably coupled to the digging implement or bucket, a lateral spacing of about 0.5 inches to about 0.75 inches is preferably provided between the outer edges of adjacent wings on laterally adjacent digging teeth. Largely depending upon their size, and after the winged teeth are operably coupled to the digging implement or bucket, a fore-and-aft spacing of about 0.5 inch to about 4.0 inches is preferably provided between the rear end of the winged structure on the digging teeth and the forward/leading edge 14 of the bucket. Such spacings allow for inadvertent misalignment of the adapters relative to the bucket edge. Such spacing also facilitates entrapment of dirt fines between adjacent digging teeth and the leading bucket edge. Of course, and without detracting from the spirit and scope of the invention, the wing structure on each tooth can extend rearwardly beyond the rear end of the respective digging tooth and toward the leading edge of the bucket lip.
With the present invention, each time a digging tooth is replaced, new edge protection is afforded to the bucket lip whereby extending its useful life. The wing structure on the digging tooth is designed and disposed as to shield those ground engaging components disposed rearwardly of the rear edge of the digging or ground engaging tooth from wear and to promote ground penetration for the bucket. Due to the enhanced ground penetrating capabilities offered by the winged teeth, a non-beveled blade edge will readily suffice for the bucket, resulting in a more economic and stronger base edge for the bucket.
With the present invention, almost the entire leading edge of the bucket lip is protected against wear by the wing structure on the digging teeth penetrating, fracturing and slicing the ground in advance of the bucket edge passing therethrough. Since the wing structure on the digging tooth of the present invention serve to penetrate and fracture the ground in advance of the bucket edge moving therethrough, the savings associated with either prolonging the purchase of a new cutting edge or the potential elimination of the need for costly carbide hardfacing of the bucket edge can be realized. Moreover, and in the embodiment wherein the wing structure on the digging tooth is arranged generally symmetrically about the digging tooth central axis, such design allows the teeth to be reversed or rotated about the centerline to maximize their utility.
Those tooth embodiments defining an open channel on one of the generally planar surfaces of the wing structure provide numerous advantages especially when a flex-pin style retaining apparatus is used to couple the adapter and digging tooth in combination with each other. As discussed above in detail, the digging tooth design having open channels facilitates flex-pin insertion by effecting compression of the flex-pin width in the range of approximately 15% to 40%. Compression of the width of the flex-pin by 15% to 40% will be specially advantageous in those commonly known situations where the holes on the digging tooth fail to align in a fore-and-aft direction with the opening or bore in the adapter receiving the flex-pin. Moreover, the open channel on at least one of the upper or lower generally planar surfaces of the digging tooth wing serves a dual purpose. First, the channel serves as a pin holder in a relatively space constrained location. Second, the sides of the open channel serve as tool guides during installation of the retaining apparatus.
Those skilled in the art recognize the retaining pins for such retaining apparatus come in multiple lengths. Operators using longer retaining pins on conventional digging teeth face the definite prospect that the ends of the retaining pin will protrude from opposed sides of the digging tooth and, thus, the pin can become dislodged by the digging forces to which the pin ends are exposed. Of course, should the retainer become inadvertently or otherwise dislodged, separation and loss of the digging tooth from the two-part system is likely to result. With a preferred form of the invention, and following retainer installation, the sides of the open channels wrap about and extend at least partially along lengthwise end portions of the retainer extending from opposed sides of the tooth whereby protecting the free ends of the retaining apparatus. Moreover, and with another preferred form of the invention, the tooth is configured to provide an additional locking feature to inhibit inadvertent linear shifting of the retainer apparatus relative to the tooth and adapter thereby guarding against inadvertent separation and loss of the digging tooth during a digging operation.
From the foregoing, it will be observed that numerous modifications and variations can be made and effected without departing or detracting from the true spirit and novel concept of the present invention. Moreover, it will be appreciated, the present disclosure is intended to set forth an exemplification of the invention which is not intended to limit the invention to the specific embodiment illustrated. Rather, this disclosure is intended to cover by the appended claims all such modifications and variations as fall within the spirit and scope of the claims.
This application claims the benefit of provisional Application Ser. No. 60/501,381, filed Sep. 9, 2003.
Number | Name | Date | Kind |
---|---|---|---|
1009254 | McKenzie | Nov 1911 | A |
1796737 | Van Buskirk | Mar 1931 | A |
1843205 | Clark | Feb 1932 | A |
1959847 | Van Buskirk | May 1934 | A |
2005016 | Van Buskirk | Jun 1935 | A |
2167425 | Page | Jul 1939 | A |
2385395 | Baer | Sep 1945 | A |
2623309 | Frye | Dec 1952 | A |
D190335 | Livermore | May 1961 | S |
D207448 | Wilson | Apr 1967 | S |
D207451 | Wilson | Apr 1967 | S |
3422915 | Watts | Jan 1969 | A |
3606471 | Evans | Sep 1971 | A |
3888028 | White | Jun 1975 | A |
3947982 | Mantovani | Apr 1976 | A |
D243843 | Edwards | Mar 1977 | S |
4050172 | Peterson | Sep 1977 | A |
4083605 | College et al. | Apr 1978 | A |
4117611 | Hemphill | Oct 1978 | A |
4208816 | West | Jun 1980 | A |
4317299 | Funk | Mar 1982 | A |
4329798 | Edwards | May 1982 | A |
D285691 | Johnson | Sep 1986 | S |
4642920 | Lehnhoff | Feb 1987 | A |
5188680 | Hahn et al. | Feb 1993 | A |
D354291 | Edwards | Jan 1995 | S |
5499686 | Parker | Mar 1996 | A |
5778570 | Eichelberger | Jul 1998 | A |
D411546 | Chapman | Jun 1999 | S |
D415173 | Zaun | Oct 1999 | S |
D415773 | Chapman | Oct 1999 | S |
6070345 | Akaki et al. | Jun 2000 | A |
D429257 | Zaun | Aug 2000 | S |
D429258 | Zaun | Aug 2000 | S |
20030010157 | Bruce | Jan 2003 | A1 |
Number | Date | Country |
---|---|---|
1297827 | Nov 1972 | GB |
WO 2005005737 | Jan 2005 | WO |
Number | Date | Country | |
---|---|---|---|
20050050775 A1 | Mar 2005 | US |
Number | Date | Country | |
---|---|---|---|
60501381 | Sep 2003 | US |